$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이
Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease 원문보기

생명과학회지 = Journal of life science, v.30 no.9, 2020년, pp.826 - 833  

장현준 (울산과학기술원 생명과학부) ,  최장현 (울산과학기술원 생명과학부) ,  장종수 (대진대학교 생명화학부)

초록
AI-Helper 아이콘AI-Helper

Phospholipase C gamma (PLCγ)는 phosphatidylinositol을 가수분해하여 신호전달 과정에 참여하는 PLC의 주요한 isotype으로 γ-specific array의 특징적인 구조를 바탕으로 receptor tyrosine kinases 및 non-receptor tyrosine kinase 신호를 주로 매개한다. PLCγ1과 PLCγ2의 두 isozyme이 존재하며 다양한 세포에서 발현하여 cell proliferation, migration 및 differentiation 등 여러 세포작용을 조절하고 있다. 최근의 연구들에서 PLCγ 돌연변이가 cancer와 immune disease 및 brain disorder 등에 연관된다는 것이 밝혀지고 있으며 genetic model을 통해 PLCγ의 생리적·병리적 기능이 제시되었다. 본 리뷰에서는 최신의 연구 결과들을 바탕으로 PLCγ의 구조와 활성 조절 기전에 대해 기술하고 나아가 여러 질병의 발병과 진행에서 보고된 PLCγ의 돌연변이와 knockout 마우스를 활용한 연구 결과를 바탕으로 생리적·병리적 관점에서 PLCγ의 역할에 대해 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), whi...

주제어

표/그림 (2)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 리뷰에서는 primary PLC중 PLCγ에 주목하여 최근에 밝혀진 PLCγ의 구조적 특징과 조절 기전, 그리고 질병과 관련된 돌연변이와 knockout 마우스를 활용한 연구 결과에 대해 고찰하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Bae, J. H., Lew, E. D., Yuzawa, S., Tome, F., Lax, I. and Schlessinger, J. 2009. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary sh2 domain binding site. Cell 138, 514-524. 

  2. Behjati, S., Tarpey, P. S., Sheldon, H., Martincorena, I., Van Loo, P., Gundem, G., Wedge, D. C., Ramakrishna, M., Cooke, S. L. and Pillay, N., et al. 2014. Recurrent ptprb and plcg1 mutations in angiosarcoma. Nat. Genet. 46, 376-379. 

  3. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. 2000. The protein data bank. Nucleic Acids Res. 28, 235-242. 

  4. Bunney, T. D., Esposito, D., Mas-Droux, C., Lamber, E., Baxendale, R. W., Martins, M., Cole, A., Svergun, D., Driscoll, P. C. and Katan, M. 2012. Structural and functional integration of the plcgamma interaction domains critical for regulatory mechanisms and signaling deregulation. Structure 20, 2062-2075. 

  5. Cockcroft, S. and Gomperts, B. D. 1985. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314, 534-536. 

  6. Dawson, R. M. 1959. Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from p. Notatum and ox pancreas. Biochim. Biophys. Acta. 33, 68-77. 

  7. De Lange, K. M., Moutsianas, L., Lee, J. C., Lamb, C. A., Luo, Y., Kennedy, N. A., Jostins, L., Rice, D. L., Gutierrez-Achury, J. and Ji, S. G., et al. 2017. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256-261. 

  8. Ellis, M. V., James, S. R., Perisic, O., Downes, C. P., Williams, R. L. and Katan, M. 1998. Catalytic domain of phosphoinositide-specific phospholipase c (plc). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J. Biol. Chem. 273, 11650-11659. 

  9. Falasca, M., Logan, S. K., Lehto, V. P., Baccante, G., Lemmon, M. A. and Schlessinger, J. 1998. Activation of phospholipase c gamma by pi 3-kinase-induced ph domain-mediated membrane targeting. EMBO J. 17, 414-422. 

  10. Follo, M. Y., Pellagatti, A., Armstrong, R. N., Ratti, S., Mongiorgi, S., De Fanti, S., Bochicchio, M. T., Russo, D., Gobbi, M. and Miglino, M., et al. 2019. Response of high-risk mds to azacitidine and lenalidomide is impacted by baseline and acquired mutations in a cluster of three inositide-specific genes. Leukemia 33, 2276-2290. 

  11. Ftouhi-Paquin, N., Alda, M., Grof, P., Chretien, N., Rouleau, G. and Turecki, G. 2001. Identification of three polymorphisms in the translated region of plc-gamma1 and their investigation in lithium responsive bipolar disorder. Am. J. Med. Genet. 105, 301-305. 

  12. Fu, G., Chen, Y., Yu, M., Podd, A., Schuman, J., He, Y., Di, L., Yassai, M., Haribhai, D. and North, P. E., et al. 2010. Phospholipase c{gamma}1 is essential for t cell development, activation, and tolerance. J. Exp. Med. 207, 309-318. 

  13. Gbadegesin, R. A., Adeyemo, A., Webb, N. J., Greenbaum, L. A., Abeyagunawardena, A., Thalgahagoda, S., Kale, A., Gipson, D., Srivastava, T. and Lin, J. J., et al. 2015. Hla-dqa1 and plcg2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1701-1710. 

  14. Gellatly, S. A., Kalujnaia, S. and Cramb, G. 2012. Cloning, tissue distribution and sub-cellular localisation of phospholipase c x-domain containing protein (plcxd) isoforms. Biochem. Biophys. Res. Commun. 424, 651-656. 

  15. Hajicek, N., Charpentier, T. H., Rush, J. R., Harden, T. K. and Sondek, J. 2013. Autoinhibition and phosphorylation-induced activation of phospholipase c-gamma isozymes. Biochemistry 52, 4810-4819. 

  16. Hajicek, N., Keith, N. C., Siraliev-Perez, E., Temple, B. R., Huang, W., Zhang, Q., Harden, T. K. and Sondek, J. 2019. Structural basis for the activation of plc-gamma isozymes by phosphorylation and cancer-associated mutations. Elife 8. 

  17. Harlan, J. E., Hajduk, P. J., Yoon, H. S. and Fesik, S. W. 1994. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168-170. 

  18. Hokin, L. E. and Hokin, M. R. 1953. The incorporation of 32p into the nucleotides of ribonucleic acid in pigeon pancreas slices. Biochim. Biophys. Acta. 11, 591-592. 

  19. Ichise, H., Ichise, T. and Yoshida, N. 2016. Phospholipase cgamma2 is required for luminal expansion of the epididymal duct during postnatal development in mice. PLoS One 11, e0150521. 

  20. Jang, H. J., Suh, P. G., Lee, Y. J., Shin, K. J., Cocco, L. and Chae, Y. C. 2018. Plcgamma1: Potential arbitrator of cancer progression. Adv. Biol. Regul. 67, 179-189. 

  21. Ji, Q. S., Winnier, G. E., Niswender, K. D., Horstman, D., Wisdom, R., Magnuson, M. A. and Carpenter, G. 1997. Essential role of the tyrosine kinase substrate phospholipase c-gamma1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA. 94, 2999-3003. 

  22. Kang, D. S., Yang, Y. R., Lee, C., Park, B., Park, K. I., Seo, J. K., Seo, Y. K., Cho, H., Lucio, C. and Suh, P. G. 2018. Netrin-1/dcc-mediated plcgamma1 activation is required for axon guidance and brain structure development. EMBO Rep. 19. 

  23. Kemp, P., Hubscher, G. and Hawthorne, J. N. 1961. Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids. Biochem. J. 79, 193-200. 

  24. Kertesz, Z., Gyori, D., Kormendi, S., Fekete, T., Kis-Toth, K., Jakus, Z., Schett, G., Rajnavolgyi, E., Dobo-Nagy, C. and Mocsai, A. 2012. Phospholipase cgamma2 is required for basal but not oestrogen deficiency-induced bone resorption. Eur. J. Clin. Invest. 42, 49-60. 

  25. Kim, H. Y., Yang, Y. R., Hwang, H., Lee, H. E., Jang, H. J., Kim, J., Yang, E., Kim, H., Rhim, H. and Suh, P. G., et al. 2019. Deletion of plcgamma1 in gabaergic neurons increases seizure susceptibility in aged mice. Sci. Rep. 9, 17761. 

  26. Liao, H. J., Kume, T., Mckay, C., Xu, M. J., Ihle, J. N. and Carpenter, G. 2002. Absence of erythrogenesis and vasculogenesis in plcg1-deficient mice. J. Biol. Chem. 277, 9335-9341. 

  27. Liu, Y., Bunney, T. D., Khosa, S., Mace, K., Beckenbauer, K., Askwith, T., Maslen, S., Stubbs, C., De Oliveira, T. M. and Sader, K., et al. 2020. Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase c gamma enzymes. EBioMedicine 51, 102607. 

  28. Lovlie, R., Berle, J. O., Stordal, E. and Steen, V. M. 2001. The phospholipase c-gamma1 gene (plcg1) and lithium-responsive bipolar disorder: Re-examination of an intronic dinucleotide repeat polymorphism. Psychiatr. Genet. 11, 41-43. 

  29. Magno, L., Lessard, C. B., Martins, M., Lang, V., Cruz, P., Asi, Y., Katan, M., Bilsland, J., Lashley, T. and Chakrabarty, P., et al. 2019. Alzheimer's disease phospholipase c-gamma-2 (plcg2) protective variant is a functional hypermorph. Alzheimers Res. Ther. 11, 16. 

  30. Manso, R., Rodriguez-Pinilla, S. M., Gonzalez-Rincon, J., Gomez, S., Monsalvo, S., Llamas, P., Rojo, F., Perez-Callejo, D., Cereceda, L. and Limeres, M. A., et al. 2015. Recurrent presence of the plcg1 s345f mutation in nodal peripheral t-cell lymphomas. Haematologica 100, e25-27. 

  31. Martin-Nalda, A., Fortuny, C., Rey, L., Bunney, T. D., Alsina, L., Esteve-Sole, A., Bull, D., Anton, M. C., Basagana, M. and Casals, F., et al. 2020. Severe autoinflammatory manifestations and antibody deficiency due to novel hypermorphic plcg2 mutations. J. Clin. Immunol. 40, 987-1000. 

  32. Moran-Villasenor, E., Saez-De-Ocariz, M., Torrelo, A., Arostegui, J. I., Yamazaki-Nakashimada, M. A., Alcantara-Ortigoza, M. A., Gonzalez-Del-Angel, A., Velazquez-Aragon, J. A., Lopez-Herrera, G. and Berron-Ruiz, L., et al. 2019. Expanding the clinical features of autoinflammation and phospholipase cgamma2-associated antibody deficiency and immune dysregulation by description of a novel patient. J. Eur. Acad. Dermatol. Venereol. 33, 2334-2339. 

  33. Neves, J. F., Doffinger, R., Barcena-Morales, G., Martins, C., Papapietro, O., Plagnol, V., Curtis, J., Martins, M., Kumararatne, D. and Cordeiro, A. I., et al. 2018. Novel plcg2 mutation in a patient with aplaid and cutis laxa. Front. Immunol. 9, 2863. 

  34. Ombrello, M. J., Remmers, E. F., Sun, G., Freeman, A. F., Datta, S., Torabi-Parizi, P., Subramanian, N., Bunney, T. D., Baxendale, R. W. and Martins, M. S., et al. 2012. Cold urticaria, immunodeficiency, and autoimmunity related to plcg2 deletions. N. Engl. J. Med. 366, 330-338. 

  35. Parker, L., Bahat, H., Appel, M. Y., Baum, D. V., Forer, R., Pillar, N., Goldberg, M. and Goldman, M. 2019. Phospholipase c-gamma 2 activity in familial steroid-sensitive nephrotic syndrome. Pediatr. Res. 85, 719-723. 

  36. Paterson, H. F., Savopoulos, J. W., Perisic, O., Cheung, R., Ellis, M. V., Williams, R. L. and Katan, M. 1995. Phospholipase c delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312(Pt 3), 661-666. 

  37. Piechulek, T., Rehlen, T., Walliser, C., Vatter, P., Moepps, B. and Gierschik, P. 2005. Isozyme-specific stimulation of phospholipase c-gamma2 by rac gtpases. J. Biol. Chem. 280, 38923-38931. 

  38. Ryu, S. H., Suh, P. G., Cho, K. S., Lee, K. Y. and Rhee, S. G. 1987. Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase c. Proc. Natl. Acad. Sci. USA. 84, 6649-6653. 

  39. Schade, A., Walliser, C., Wist, M., Haas, J., Vatter, P., Kraus, J. M., Filingeri, D., Havenith, G., Kestler, H. A. and Milner, J. D., et al. 2016. Cool-temperature-mediated activation of phospholipase c-gamma2 in the human hereditary disease plaid. Cell Signal. 28, 1237-1251. 

  40. Serrano, C. J., Graham, L., Debell, K., Rawat, R., Veri, M. C., Bonvini, E., Rellahan, B. L. and Reischl, I. G. 2005. A new tyrosine phosphorylation site in plc gamma 1: The role of tyrosine 775 in immune receptor signaling. J. Immunol. 174, 6233-6237. 

  41. Sierksma, A., Lu, A., Mancuso, R., Fattorelli, N., Thrupp, N., Salta, E., Zoco, J., Blum, D., Buee, L. and De Strooper, B., et al. 2020. Novel alzheimer risk genes determine the microglia response to amyloid-beta but not to tau pathology. EMBO Mol. Med. 12, e10606. 

  42. Sims, R., Van Der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R. and Bis, J. C., et al. 2017. Rare coding variants in plcg2, abi3, and trem2 implicate microglial-mediated innate immunity in alzheimer's disease. Nat. Genet. 49, 1373-1384. 

  43. Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I. 1983. Release of ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69. 

  44. Suh, P. G., Park, J. I., Manzoli, L., Cocco, L., Peak, J. C., Katan, M., Fukami, K., Kataoka, T., Yun, S. and Ryu, S. H. 2008. Multiple roles of phosphoinositide-specific phospholipase c isozymes. BMB Rep. 41, 415-434. 

  45. Suh, P. G., Ryu, S. H., Moon, K. H., Suh, H. W. and Rhee, S. G. 1988. Cloning and sequence of multiple forms of phospholipase c. Cell 54, 161-169. 

  46. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y. 1979. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254, 3692-3695. 

  47. Takalo, M., Wittrahm, R., Wefers, B., Parhizkar, S., Jokivarsi, K., Kuulasmaa, T., Makinen, P., Martiskainen, H., Wurst, W. and Xiang, X., et al. 2020. The alzheimer's disease-associated protective $plc{\gamma}2$ -p522r variant promotes beneficial microglial functions. Mol. Neurodegener. 15, 52. 

  48. Takenawa, T. and Nagai, Y. 1981. Purification of phosphatidylinositol-specific phospholipase c from rat liver. J. Biol. Chem. 256, 6769-6775. 

  49. Turecki, G., Grof, P., Cavazzoni, P., Duffy, A., Grof, E., Ahrens, B., Berghofer, A., Muller-Oerlinghausen, B., Dvorakova, M. and Libigerova, E., et al. 1998. Evidence for a role of phospholipase c-gamma1 in the pathogenesis of bipolar disorder. Mol. Psychiatry 3, 534-538. 

  50. Vallois, D., Dobay, M. P., Morin, R. D., Lemonnier, F., Missiaglia, E., Juilland, M., Iwaszkiewicz, J., Fataccioli, V., Bisig, B. and Roberti, A., et al. 2016. Activating mutations in genes related to tcr signaling in angioimmunoblastic and other follicular helper t-cell-derived lymphomas. Blood 128, 1490-1502. 

  51. Van Der Lee, S. J., Conway, O. J., Jansen, I., Carrasquillo, M. M., Kleineidam, L., Van Den Akker, E., Hernandez, I., Van Eijk, K. R., Stringa, N. and Chen, J. A., et al. 2019. A nonsynonymous mutation in plcg2 reduces the risk of alzheimer's disease, dementia with lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta. Neuropathol. 138, 237-250. 

  52. Vaque, J. P., Gomez-Lopez, G., Monsalvez, V., Varela, I., Martinez, N., Perez, C., Dominguez, O., Grana, O., Rodriguez-Peralto, J. L. and Rodriguez-Pinilla, S. M., et al. 2014. Plcg1 mutations in cutaneous t-cell lymphomas. Blood 123, 2034-2043. 

  53. Walliser, C., Wist, M., Hermkes, E., Zhou, Y., Schade, A., Haas, J., Deinzer, J., Desire, L., Li, S. S. C. and Stilgenbauer, S., et al. 2018. Functional characterization of phospholipase c-gamma2 mutant protein causing both somatic ibrutinib resistance and a germline monogenic autoinflammatory disorder. Oncotarget 9, 34357-34378. 

  54. Wang, D., Feng, J., Wen, R., Marine, J. C., Sangster, M. Y., Parganas, E., Hoffmeyer, A., Jackson, C. W., Cleveland, J. L. and Murray, P. J., et al. 2000. Phospholipase cgamma2 is essential in the functions of b cell and several fc receptors. Immunity 13, 25-35. 

  55. Woyach, J. A., Furman, R. R., Liu, T. M., Ozer, H. G., Zapatka, M., Ruppert, A. S., Xue, L., Li, D. H., Steggerda, S. M. and Versele, M., et al. 2014. Resistance mechanisms for the bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286-2294. 

  56. Yang, Y. R., Follo, M. Y., Cocco, L. and Suh, P. G. 2013. The physiological roles of primary phospholipase c. Adv. Biol. Regul. 53, 232-241. 

  57. Yang, Y. R., Jung, J. H., Kim, S. J., Hamada, K., Suzuki, A., Kim, H. J., Lee, J. H., Kwon, O. B., Lee, Y. K. and Kim, J., et al. 2017. Forebrain-specific ablation of phospholipase cgamma1 causes manic-like behavior. Mol. Psychiatry 22, 1473-1482. 

  58. Zhou, Q., Lee, G. S., Brady, J., Datta, S., Katan, M., Sheikh, A., Martins, M. S., Bunney, T. D., Santich, B. H. and Moir, S., et al. 2012. A hypermorphic missense mutation in plcg2, encoding phospholipase cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91, 713-720. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로