$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Development of a Wearable Inertial Sensor-based Gait Analysis Device Using Machine Learning Algorithms -Validity of the Temporal Gait Parameter in Healthy Young Adults- 원문보기

PNF and movement, v.18 no.2, 2020년, pp.287 - 296  

Seol, Pyong-Wha (Department of Physical Therapy, Sahmyook University) ,  Yoo, Heung-Jong (Bodit Inc) ,  Choi, Yoon-Chul (Bodit Inc) ,  Shin, Min-Yong (Bodit Inc) ,  Choo, Kwang-Jae (Bodit Inc) ,  Kim, Kyoung-Shin (Bodit Inc) ,  Baek, Seung-Yoon (Department of Physical Therapy, Sahmyook University) ,  Lee, Yong-Woo (Department of Physical Therapy, Sahmyook University) ,  Song, Chang-Ho (Department of Physical Therapy, Sahmyook University)

Abstract AI-Helper 아이콘AI-Helper

Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning algorithms, and to validate this novel device using temporal gait parameters. Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no muscul...

Keyword

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In conclusion, this study revealed the validity of the wearable inertial sensor on temporal parameters for gait analysis. It is thought that gait analysis will be more convenient under various conditions through a cost effective wearable inertial sensor.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Auvinet B, Berrut G, Touzard C, et al. Reference data for normal subjects obtained with an accelerometric device. Gait and Posture. 2002;16(2):124-134. 

  2. Bertoli M, Cereatti A, Trojaniello D, et al. Estimation of spatio-temporal parameters of gait from magnetoinertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Biomedical Engineering Online. 2018;17(1):58. 

  3. Bertuletti S, Cereatti A, Comotti D, et al. Static and dynamic accuracy of an innovative miniaturized wearable platform for short range distance measurements for human movement applications. Sensors (Basel). 2017;17(7):1492. 

  4. Caldas R, Mundt M, Potthast W, et al. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture. 2017;57:204-210. 

  5. Chen S, Lach J, Lo B, et al. Toward pervasive gait analysis with wearable sensors: a systematic review. IEEE Journal of Biomedical and Health Informatics. 2016;20(6):1521-1537. 

  6. Donath L, Faude O, Lichtenstein E, et al. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. Journal of Neuroengineering and Rehabilitation. 2016;13:6. 

  7. Donath L, Faude O, Lichtenstein E, et al. Mobile inertial sensor based gait analysis: validity and reliability of spatiotemporal gait characteristics in healthy seniors. Gait Posture. 2016;49:371-374. 

  8. Gonzalez-Recio O, Jimenez-Montero JAAlenda R. The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets. Journal of Dairy Science. 2013;96(1):614-624. 

  9. Howcroft J, Kofman J, Lemaire ED, et al. Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. Journal of Biomechanics. 2016;49(7):992-1001. 

  10. Kluge F, Gassner H, Hannink J, et al. Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors (Basel). 2017;17(7):1622. 

  11. Kose A, Cereatti ADella Croce U. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Journal of Neuroengineering and Rehabilitation. 2012;9:9. 

  12. Mancini MHorak FB. Potential o f APDM mobility lab for the monitoring of the progression of Parkinson's disease. Expert Review of Medical Devices. 2016;13(5):455-462. 

  13. Menz HB, Lord SRFitzpatrick RC. Age-related differences in walking stability. Age and Ageing. 2003;32(2):137-142. 

  14. Park JH, Mancini M, Carlson-Kuhta P, et al. Quantifying effects of age on balance and gait with inertial sensors in community-dwelling healthy adults. Experimental Gerontology. 2016;85:48-58. 

  15. Potluri S, Chandran AB, Diedrich C, et al. Machine learning based human gait segmentation with wearable sensor platform. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2019;2019:588-594. 

  16. Rhudy MBMahoney JM. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals. Journal of Medical Engineering & Technology. 2018;42(3):236-243. 

  17. Schwesig R, Leuchte S, Fischer D, et al. Inertial sensor based reference gait data for healthy subjects. Gait Posture. 2011;33(4):673-678. 

  18. Senden R, Savelberg HH, Grimm B, et al. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling. Gait and Posture. 2012;36(2):296-300. 

  19. Shull PB, Jirattigalachote W, Hunt MA, et al. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait and Posture. 2014;40(1):11-19. 

  20. Sposaro FTyson G. iFall: an android application for fall monitoring and response. Conference of the IEEE Engineering in Medicine and Biology Society. 2009;2009:6119-6122. 

  21. Sprager SJuric MB. Inertial sensor-based gait recognition: a review. Sensors (Basel). 2015;15(9):22089-22127. 

  22. Takeda R, Lisco G, Fujisawa T, et al. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Sensors (Basel). 2014;14(12):23230-23247. 

  23. Teufl W, Lorenz M, Miezal M, et al. Towards inertial sensor based mobile gait analysis: event-detection and spatio-temporal parameters. Sensors (Basel). 2018;19(1):38. 

  24. Washabaugh EP, Kalyanaraman T, Adamczyk PG, et al. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87-93. 

  25. Yamada M, Aoyama T, Mori S, et al. Objective assessment of abnormal gait in patients with rheumatoid arthritis using a smartphone. Rheumatology International. 2012;32(12):3869-3874. 

  26. Yang SLi Q. Inertial sensor-based methods in walking speed estimation: a systematic review. Sensors (Basel). 2012;12(5):6102-6116. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로