$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

알츠하이머병의 영상 진단을 위한 형광 프로브의 개발
Development of Fluorescent Small Molecules for Imaging of Alzheimer's Disease Biomarkers 원문보기

공업화학 = Applied chemistry for engineering, v.32 no.1, 2021년, pp.1 - 9  

민창호 (경북대학교 공과대학 응용화학공학부 응용화학과) ,  하헌수 (경북대학교 공과대학 응용화학공학부 응용화학과) ,  전종호 (경북대학교 공과대학 응용화학공학부 응용화학과)

초록
AI-Helper 아이콘AI-Helper

알츠하이머병은 신경퇴행질환으로 뇌조직에서 발생하는 아밀로이드 베타(amyloid-β, Aβ) 펩타이드의 축적과 응집, 타우 단백질의 초인산화, 고농도의 특정 금속이온 축적에 의해 발병하는 것으로 알려져 있다. 현재까지 효과적인 치료제가 개발되지 못하였기 때문에, 알츠하이머병을 초기에 정확하게 진단하는 기술은 매우 중요하다. 알츠하이머병의 진단을 위해 개발된 다양한 기법 중 형광 프로브를 이용한 알츠하이머병의 바이오마커 영상화는 많은 연구자들의 관심을 받고 있다. 본 리뷰 논문에서는 최근 개발된 알츠하이머병 진단용 형광 프로브의 구조와, 체내 뇌 영상화에의 적용을 소개하고자 한다. 본 논문은 향후 새로운 프로브를 개발하고자 하는 연구자들에게 많은 도움이 될 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Alzheimer's disease (AD), an irreversible degenerative disorder, is associated with accumulation and aggregation of amyloid-β peptides, hyperphosphorylated tau proteins, and high level of metal ions in the brain. Up to date, there is no effective therapeutic agent to stop the progress of the di...

주제어

표/그림 (13)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 방법 중 하나이다. 본 리뷰 논문에서 알츠하이머병의 바이오마커(A β, tau tangle)를 검출하기 위한 다양한 종류의 형광 프로브의 개발과 활용 연구를 살펴보았다. 실제로 형광 영상 기법을 활용하여 사람을 대상으로 하는 임상에서 알츠하이머병을 진단하기 위해서는 여전히 기술적인 한계가 존재한다.
  • 지난 수년간 많은 학자들은 이러한 형광 물질을 활용하여 분자 수준에서 알츠하이머병의 발병 및 진행 메커니즘 연구와 더불어 치료제의 개발과 후보물질의 효능 평가 연구를 수행해 왔다. 리뷰논문에서는 근적외선 영역에서 광학 신호를 방출하는 형광 프로브와 알츠하이머병의 바이오마커(Aβ, tau tangle 등)의 실시간 생체 영상에 적용한 최근 연구들을 소개하고 관련 분야에 대한 향후 전망을 제시하고자 한다.
  • 또한 PiB를 기초로 한 다양한 유도체들이 합성되어 진단용 의약품 개발에 기여하였다. 이후 많은 연구자들은 다양한 종류의 분자 구조를 연구하여 새로운 특성(근적외선 영역에서 형광 신호 방출, 높은 선택성, Aβ 플라크 결합 시 형광의 세기의 증가 등)을 가진 프로브의 개발을 통하여 뇌 영상 연구에 활용하고자 하였다[17].
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. J. Greenwald and R. Riek, Biology of amyloid: Structure, function, and regulation, Structure, 18, 1244-1260 (2018). 

  2. P. Faller, C. Hureau, and O. Berthoumieu, Role of metal ions in the self-assembly of the Alzheimer's amyloid-beta peptide, Inorg. Chem., 52, 12193-12206 (2013). 

  3. Y.-H. Suh and F. Checler, Amyloid precursor protein, presenilins, and α-synuclein: Molecular pathogenesis and pharmacological applications in Alzheimer's disease, Pharmacol. Res., 54, 469-525 (2002). 

  4. U. C. Mu?ller, T. Deller, and M. Korte, Not just amyloid: Phy- siological functions of the amyloid precursor protein family, Nat. Rev. Neurosci., 18, 281-298 (2017). 

  5. K. P. Kepp, Bioinorganic chemistry of Alzheimer's disease, Chem. Rev., 112, 5193-5239 (2012). 

  6. K. Iqbal, A. del C. Alonso, S. Chen, M. O. Chohan, E. El-Akkad, C.-X. Gong, S. Khatoon, B. Li, F. Liu, A. Rahman, H. Tanimukai, and I. Grundke-Iqbal, Tau pathology in Alzheimer disease and other tauopathies, Biochim. Biophys. Acta, Mol. Basis Dis., 1739, 198-210 (2005). 

  7. K. V. Kuchibhotla, S. Wegmann, K. J. Kopeikina, J. Hawkes, N. Rudinskiy, M. L. Andermann, T. L. Spires-Jones, B. J. Bacskai, and B. T. Hyman, Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo, Proc. Natl. Acad. Sci. U. S. A., 111, 510-514 (2014). 

  8. G. Lippens, A. Sillen, I. Landrieu, L. Amniai, N. Sibille, P. Barbier, A. Leroy, X. Hanoulle, and J.-M. Wieruszeski, Tau aggregation in Alzheimer's disease, Prion, 1, 21-25 (2007). 

  9. I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski, and L. I. Binder, Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. U. S. A., 83, 4913-4917 (1986). 

  10. A. Lorenzo and B. A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. U. S. A., 91, 12243-12247 (1994). 

  11. W. E. Klunk, M. L. Debnath, and J. W. Pettegrew, Chrysamine-G binding to Alzheimer and control brain: Autopsy study of a new amyloid probe, Neurobiol. Aging, 16, 541-548 (1995). 

  12. H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T, Anal. Biochem., 177, 244-249 (1989). 

  13. W. E. Klunk, B. J. Bacskai, C. A. Mathis, S. T. Kajdasz, M. E. McLellan, M. P. Frosch, M. L. Debnath, D. P. Holt, Y. Wang, and B. T. Hyman, Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered congo red derivative, J. Neuropathol. Exp. Neurol., 61, 797-805 (2002). 

  14. M. Hintersteiner, A. Enz, P. Frey, A.-L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K.-H. Wiederhold, and H.-U. Gremlich, In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe, Nat. Biotechnol., 23, 577-583 (2005). 

  15. A. G. Vlassenko, T. L. S. Benzinger, and J. C. Morris, PET amyloid-beta imaging in preclinical Alzheimer's disease, Biochim. Biophys. Acta, Mol. Basis Dis., 1822, 370-379 (2012). 

  16. C. A. Mathis, N. S. Mason, B. J. Lopresti, and W. E. Klunk, Development of positron emission tomography β-amyloid plaque imaging agents, Semin. Nucl. Med., 42, 423-432 (2012). 

  17. N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, Promising two-photon probes for in vivo detection of β amyloid deposits, Chem. Commun., 50, 11694-11697 (2014). 

  18. P. Verwilst, H. S. Kim, S. Kim, C. Kang, and J. S. Kim, Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores, Chem. Soc. Rev., 47, 2249-2265 (2018). 

  19. P. Verwilst, H.-R. Kim, J. Seo J, N.-W. Sohn, S.-Y. Cha, Y. Kim, S. Maeng, J.-W. Shin, J. H. Kwak C. Kang, and J. S. Kim, Rational design of in vivo tau tangle-selective near-infrared fluorophores: expanding the bodipy universe, J. Am. Chem. Soc., 139, 13393-13403 (2017). 

  20. E. E. Nesterov, J. Skoch, B. T. Hyman, W. E. Klunk, B. J. Bacskai and T. M. Swager, In vivo optical imaging of amyloid aggregates in brain: Design of fluorescent markers, Angew. Chem. Int. Ed., 44, 5452-5456 (2008). 

  21. S. B. Raymond, J. Skoch, I. D. Hills, E. E. Nesterov, T. M. Swager, and B. J. Bacskai, Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology, Eur. J. Nucl. Med. Mol. Imaging, 35, 93-98 (2008). 

  22. Y. Wang, T. Liu, E. Zhang, S. Luo, X. Tan, and C. Shi, Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells, Biomaterials, 35, 4116-4124 (2014). 

  23. G. Lv, A. Sun, P. Wei, N. Zhang, H. Lan, and T. Yi, A spiropyran-based fluorescent probe for the specific detection of b-amyloid peptide oligomersin Alzheimer's disease, Chem. Commun., 52, 8865 (2016). 

  24. J. W. Yan, J. Y. Zhu, K. X. Zhou, J. S. Wang, H. Y. Tan, Z. Y. Xu, S. B. Chen, Y. T. Lu, M. C. Cui, and L. Zhang, Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques, Chem. Commun., 53, 9910-9913 (2017). 

  25. H. L. Yang, S. Q. Fang, Y. W. Tang, C. Wang, H. Luo, L. L. Qu, J. H. Zhao, C. J. Shi, F. C. Yin, X. B. Wang, and L. Y. Kong, A hemicyanine derivative for near-infrared imaging of betaamyloid plaques in Alzheimer's disease, Eur. J. Med. Chem., 179, 736-743 (2019). 

  26. H. Y. Kim, U. Sengupta, P. Shao, M. J. Guerrero-Munoz, R. Kayed, and M. Bai, Alzheimer's disease imaging with a novel Tau targeted near infrared ratiometric probe, Am. J. Nucl. Med. Mol. Imaging, 3, 102-117 (2013). 

  27. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation, Mol. Pharmacol., 69, 195-206 (2006). 

  28. C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova, and A. Moore, Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits, J. Am. Chem. Soc., 131, 15257-15261 (2009). 

  29. X. Zhang, Y. Tian, Z. Li, X. Tian, H. Sun, H. Liu, A. Moore, and C. Ran, Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease, J. Am. Chem. Soc., 135, 16397-16409 (2013). 

  30. X. Zhang, Y. Tian, C. Zhang, X. Tian, A. W. Ross, R. D. Moir, H. Sun, R. E. Tanzi, A. Moore, and C. Ran, Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer's disease, Proc. Natl. Acad. Sci. U. S. A., 112, 9734-9739 (2015). 

  31. Y. Li, J. Yang, H. Liu, J. Yang, L. Du, H. Feng, Y. Tian, J. Cao, and C. Ran, Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species, Chem. Sci., 8, 7710-7717 (2017). 

  32. K. S. Park, Y. Seo, M. K. Kim, K. Kim, Y. K. Kim, H. Choo, and Y. A. Chong, Curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer's disease, Org. Biomol. Chem., 13, 11194-11199 (2015). 

  33. Y. Seo, K. S. Park, T. Ha, M. K. Kim, Y. J. Hwang, J. Lee, H. Ryu, H. Choo, and Y. Chong, A smart near-infrared fluorescence probe for selective detection of tau fibrils in Alzheimer's disease, ACS Chem. Neurosci., 7, 1474-1481 (2016). 

  34. K. S. Park, K. Yoo, M. K. Kim, W. Jung, Y. K. Choi, and Y. Chong, A novel probe with a chlorinated α cyanoacetophenone acceptor moiety shows near-infrared fluorescence specific for tau fibrils, Chem. Pharm. Bull., 65, 1113-1116 (2017). 

  35. K.-S. Park, M. K. Kim, Y. Seo, T. Ha, K. Yoo, S. J. Hyeon, Y. J. Hwang, J. Lee, H. Ryu, H. Choo, and Y. A. Chong, Difluoroboron β-diketonate probe shows "Turn-on" near-infrared fluorescence specific for tau fibrils, ACS Chem. Neurosci., 8, 2124-2131 (2017). 

  36. A. Loudet and K. Burgess, BODIPY dyes and their derivatives: Syntheses and spectroscopic properties, Chem. Rev., 107, 4891-4932 (2007). 

  37. H. Watanabe, M. Ono, K. Matsumura, M. Yoshimura, H. Kimura, and H. Saji, Molecular imaging of ß-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes, Mol. Imaging, 12, 338-347 (2013). 

  38. L. Teoh, D. Su, S. Sahu, S. W. Yun, E. Drummond, F. Prelli, S. Lim, S. Cho, S. Ham, T. Wisniewski, and Y. T. Chang, A chemical fluorescent probes for the detection of Aβ oligomers, J. Am. Chem. Soc., 137, 13503 (2015). 

  39. W. Ren, J. Zhang, C. Peng, H. Xiang, J. Chen, C. Peng, W. Zhu, R. Huang, H. Zhang, and Y. Hu, Fluorescent imaging of beta-amyloid using BODIPY based near-infrared off-on fluorescent probe, Bioconjugate Chem., 29, 3459-3466 (2018). 

  40. P. Verwilst, H.-R. Kim, J. Seo, N.-W. Sohn, S.-Y. Cha, Y. Kim, S. Maeng, J.-W. Shin, J. H. Kwak, C. Kang, and J. S. Kim, Rational design of in vivo tau tangle-selective near infrared fluorophores: Expanding the BODIPY universe, J. Am. Chem. Soc., 139, 13393-13403 (2017). 

  41. W. Yang, Y. Wong, O. T. Ng, L. P. Bai, D. W. Kwong, Y. Ke, Z. H. Jiang, H. W. Li, K. K. Yung, and M. S. Wong, Inhibition of beta-amyloid peptide aggregation by multifunctionalcarbazole-based fluorophores, Angew. Chem. Int. Ed., 51, 1804-1810 (2012). 

  42. Y. Li, D. Xu, S. L. Ho, H. W. Li, R. Yang, and M. S. Wong, A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation, Biomaterials, 94, 84-92 (2016). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로