$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

End-to-end 비자기회귀식 가속 음성합성기
End-to-end non-autoregressive fast text-to-speech 원문보기

말소리와 음성과학 = Phonetics and speech sciences, v.13 no.4, 2021년, pp.47 - 53  

김위백 (고려대학교 영어영문학과) ,  남호성 (고려대학교 영어영문학과)

초록
AI-Helper 아이콘AI-Helper

Autoregressive한 TTS 모델은 불안정성과 속도 저하라는 본질적인 문제를 안고 있다. 모델이 time step t의 데이터를 잘못 예측했을 때, 그 뒤의 데이터도 모두 잘못 예측하는 것이 불안정성 문제이다. 음성 출력 속도 저하 문제는 모델이 time step t의 데이터를 예측하려면 time step 1부터 t-1까지의 예측이 선행해야 한다는 조건에서 발생한다. 본 연구는 autoregression이 야기하는 문제의 대안으로 end-to-end non-autoregressive 가속 TTS 모델을 제안한다. 본 연구의 모델은 Tacotron 2 - WaveNet 모델과 근사한 MOS, 더 높은 안정성 및 출력 속도를 보였다. 본 연구는 제안한 모델을 토대로 non-autoregressive한 TTS 모델 개선에 시사점을 제공하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Autoregressive Text-to-Speech (TTS) models suffer from inference instability and slow inference speed. Inference instability occurs when a poorly predicted sample at time step t affects all the subsequent predictions. Slow inference speed arises from a model structure that forces the predicted sampl...

주제어

참고문헌 (18)

  1. Arik, S. O., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li, X., ... Shoeybi, M. (2017). Deep voice: Real-time neural text-to-speech. Retrieved from https://arxiv.org/abs/1702.07825 

  2. Cho, K. (2013). Boltzmann machines and denoising autoencoders for image denoising. Retrieved from https://arxiv.org/abs/1301.3468 

  3. Dvorak, J. L. (2011). Moving wearables into the mainstream: Taming the Borg. New York, NY: Springer. 

  4. Griffin, D., & Lim, J. (1983, April). Signal estimation from modified short-time Fourier transform. Proceedings of the 8th International Conference on Acoustics, Speech, and Signal Processing (pp. 804-807). Boston, MA. 

  5. Holmes, J., & Holmes, W. (2002). Speech synthesis and recognition. London, UK: CRC Press. 

  6. Kumar, K., Kumar, R., de Boissiere, T. Gestin, L., Teoh, W. Z., Sotelo, J., de Brebisson, A., ... Courville, A. (2019). MelGAN: Generative adversarial networks for conditional waveform synthesis. Retrieved from https://arxiv.org/abs/1910.06711 

  7. Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T. Y. (2019). FastSpeech: Fast, robust and controllable text to speech. Retrieved from https://arxiv.org/abs/1905.09263 

  8. Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., ... Wu, Y. (2017). Natural TTS synthesis by conditioning Wavenet on mel spectrogram predictions. Retrieved from https://arxiv.org/abs/1712.05884 

  9. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Retrieved from https://arxiv.org/abs/1409.3215 

  10. Tachibana, H., Uenoyama, K., & Aihara, S. (2017). Efficiently trainable text-to-speech system based on deep convolutional networks with guided attention. Retrieved from https://arxiv.org/abs/1710.08969 

  11. Valle, R., Shih, K., Prenger, R., & Catanzaro, B. (2020). Flowtron: An autoregressive flow-based generative network for text-to-speech synthesis. Retrieved from https://arxiv.org/abs/2005.05957 

  12. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Retrieved from https://arxiv.org/abs/1706.03762 

  13. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., ... Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. Retrieved from https://arxiv.org/abs/1609.03499 

  14. van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., van den Driessche, G., ... Hassabis, D. (2017). Parallel WaveNet: Fast high-fidelity speech synthesis. Retrieved from https://arxiv.org/abs/1711.10433 

  15. Wang, T., Liu, X., Tao, J., Yi, J., Fu, R., & Wen, Z. (2020, October). Non-autoregressive end-to-end TTS with coarse-to-fine decoding. Proceedings of the 21st Annual Conference of the International Speech Communication Association (pp. 3984-3988). Shanghai, China. 

  16. Wang, Y., Skerry-Ryan, RJ., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., ... Saurous, R. A. (2017). Tacotron: Towards end-to-end speech synthesis. Retrieved from https://arxiv.org/abs/1703.10135 

  17. Yamamoto, R., Song, E., & Kim, J. M. (2019). Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. Retrieved from https://arxiv.org/abs/1910.11480 

  18. Yarrington, D. (2007). Synthesizing speech for communication devices. In K. Greenebaum, & R. Barzel (Eds.), Audio anecdotes: Tools, tips and techniques for digital audio (Vol. 3, pp. 143-155). Wellesley, MA: AK Peters. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로