$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 사과 IPM을 위한 항공 및 지리정보 기술의 진보, 제한 및 미래 응용
Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.60 no.1, 2021년, pp.135 - 143  

박용락 (웨스트 버지니아대학교) ,  조점래 (국립농업과학원 작물보호과) ,  최경희 (농촌진흥청 연구운영과) ,  김현란 (국립농업과학원 작물보호과) ,  김지원 (경상북도농업기술원 농업환경연구과) ,  김세진 (국립원예특작과학원 화훼과) ,  이동혁 (국립원예특작과학원 사과연구소) ,  박창규 (한국농수산대학교) ,  조영식 (국립원예특작과학원 사과연구소)

초록
AI-Helper 아이콘AI-Helper

항공 및 지리 공간 기술은 연구자 및 농업관련 실무자들이 더욱더 쉽게 접근할 수 있게 되었으며, 이러한 기술은 농업과 임업에 있어 현재 병해충 관리의 변화에 중추적인 역할을 할 수 있다. 지난 20년 동안 위성, 유무인항공기, 스펙트럼 센서들, 정보 시스템 및 자동화 현장 장비들의 기술들은 병해충을 감지하고, 특정 지점에 대한 병해충을 방제하는데 사용되어져 왔다. 빅 데이터 기반한 인공 지능과 함께 항공 및 지리 정보 기술의 가용함에도 불구하고 이러한 기술을 사과 IPM에 적용하는 것은 아직 실현되지 않았다. 본 논문은 사과연구소에서 수행한 사례 연구를 통해 사과 IPM 개선에 활용할 수 있는 항공 및 지리 정보기술의 발전과 한계에 대해 논하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, ...

Keyword

표/그림 (7)

참고문헌 (29)

  1. Bauer, M.E., 1985. Spectral inputs to crop identification and condition assessment. Proc. IEEE, 73, 1071-1085. 

  2. Brewster, C.C., Allen, J.C., Kopp, D.D., 1999. IPM from space: Using satellite imagery to construct regional crop maps for studying crop-insect interaction. Am. Entomol., 45, 105-17. 

  3. Carroll, M.W., Glaser, J.A., Hellmich, R.L., Hunt, T.E., Sappington, T.W., Calvin, D., Copenhaver, K., Fridgen, J., 2008. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J. Econ. Entomol., 101, 1614-1623. 

  4. Chapman, R.F., 1999. The Insects: structure and function, 4th edition. Cambridge University Press, Cambridge. 

  5. Clevers, J.G.P.W., 1999. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm., 54, 299-304. 

  6. Curran, P.J., 1985. Aerial photography for the assessment of crop condition: a review. Appl. Geogr., 5, 347-360. 

  7. Felsot, A.S., Unsworth, J.B., Linders, J.B., Roberts, G., Rautman, D., Harris, C., Carazo, E., 2010. Agrochemical spray drift; assessment and mitigation - A review. J. Environ. Sci. Health Part B, 46, 1-23. 

  8. Filho, F.H., Heldens, W.B., Kong, Z., de Lange, E.S., 2020. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol., 113, 1-25. 

  9. Fitzgerald, G.J., Maas, S.J., Detar, W.R., 2004. Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Prec. Agric., 5, 275-289. 

  10. Hasan, R.I., Yusuf, S.M., Alzubaidi, L., 2020. Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion. Plants, 9, 1302. 

  11. Hastie, T., Tibshirani, R., Friedman, J., 2009. Overview of supervised learning, in: Hastie, T., Tibshirani, R., Friedman, J. (Eds), The elements of statistical learning, Springer, New York, pp. 9-41. 

  12. Heidary, M., Douzals, J.P., Sinfort, C., Vallet, A., 2014. Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review. Crop Prot., 63, 120-130. 

  13. Herren, H.R., Bird, T.J., Nadel, D.J., 1987. Technology for automated aerial release of natural enemies of the cassava mealybug and cassava green mite. Int. J. Trop. Insect Sci., 8, 883-885. 

  14. Jensen, R.R., 1983. Biophysical remote sensing. Ann. Assoc. Am. Geogr., 73, 111-132. 

  15. Kim, J., Huebner, C., Reardon, R., Park, Y.-L., 2021. Spatiallytargeted biological control of mile-a-minute weed using Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system. J. Econ. Entomol., in press. 

  16. Mogili, U.R., Deepak, B.B.V.L., 2018. Review on application of drone systems in precision agriculture. Proc. Comp. Sci., 133, 502-509. 

  17. Moran, M.S., Inoue, Y., Barnes, E.M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ., 61, 319-346. 

  18. NGAC, 2016. Emerging technologies and the geospatial landscape. National Geospatial Advisory Committee, U.S. Department of Interior, Washington, D.C.. 

  19. Park, Y.-L., Gururajan, S. Thistle, H., Chandran, R., Reardon, R., 2018. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system. Pest Manag. Sci., 74, 141-148. 

  20. Park, Y.-L., Krell, R.K., Carroll, M., 2007. Theory, technology, and practice of site-specific insect pest management. J. Asia-Pac. Entomol., 10, 89-101. 

  21. Park, Y.-L., Tollefson, J.J., 2005. Spatial prediction of corn rootworm (Coleoptera: Chrysomelidae) adult emergence in Iowa cornfields. J. Econ. Entomol., 98, 121-128. 

  22. Roosjen, P.P., Kellenberger, B., Kooistra, L., Green, D.R., Fahrentrapp, J., 2020. Deep learning for automated detection of Drosophila suzukii: potential for UAV­based monitoring. Pest Manag. Sci., 76, 2994-3002. 

  23. Rosenthal, G., 2017. PPQ explores the tantalizing promise of unmanned air- craft systems. USDA APHIS. from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems (accessed on 15 February, 2020). 

  24. Russell, S., Norvig, P., 2020. Artificial Intelligence: A Modern Approach, 4th edition. Pearson, London. 

  25. Rustia, D.J.A., Chao, J.J., Chiu, L.Y., Wu, Y.F., Chung, J.Y., Hsu, J.C., Lin, T.T., 2021. Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method. J. Appl. Entomol., in press. 

  26. Taiz, L., Zeiger, E., 2006. Plant physiology, 4th edition. Sinauer Associates, Inc., Sunderland, MA. 

  27. Wang, A., Zhang, W., Wei, X., 2019. A review on weed detection using ground-based machine vision and image processing techniques. Comp. Electron. Agric., 158, 226-240. 

  28. Yang, Z., Rao, M.N., Elliott, N.C., Kindler, S.D., Popham, T.W., 2005. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comp. Electron. Agric., 47, 121-135. 

  29. Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W., 2019. Monitoring plant diseases and pests through remote sensing technology: a review. Comp. Electron. Agric., 165, 104943. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로