최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국응용곤충학회지 = Korean journal of applied entomology, v.60 no.1, 2021년, pp.135 - 143
박용락 (웨스트 버지니아대학교) , 조점래 (국립농업과학원 작물보호과) , 최경희 (농촌진흥청 연구운영과) , 김현란 (국립농업과학원 작물보호과) , 김지원 (경상북도농업기술원 농업환경연구과) , 김세진 (국립원예특작과학원 화훼과) , 이동혁 (국립원예특작과학원 사과연구소) , 박창규 (한국농수산대학교) , 조영식 (국립원예특작과학원 사과연구소)
Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, ...
Bauer, M.E., 1985. Spectral inputs to crop identification and condition assessment. Proc. IEEE, 73, 1071-1085.
Carroll, M.W., Glaser, J.A., Hellmich, R.L., Hunt, T.E., Sappington, T.W., Calvin, D., Copenhaver, K., Fridgen, J., 2008. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J. Econ. Entomol., 101, 1614-1623.
Chapman, R.F., 1999. The Insects: structure and function, 4th edition. Cambridge University Press, Cambridge.
Clevers, J.G.P.W., 1999. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm., 54, 299-304.
Curran, P.J., 1985. Aerial photography for the assessment of crop condition: a review. Appl. Geogr., 5, 347-360.
Felsot, A.S., Unsworth, J.B., Linders, J.B., Roberts, G., Rautman, D., Harris, C., Carazo, E., 2010. Agrochemical spray drift; assessment and mitigation - A review. J. Environ. Sci. Health Part B, 46, 1-23.
Filho, F.H., Heldens, W.B., Kong, Z., de Lange, E.S., 2020. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol., 113, 1-25.
Fitzgerald, G.J., Maas, S.J., Detar, W.R., 2004. Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Prec. Agric., 5, 275-289.
Hasan, R.I., Yusuf, S.M., Alzubaidi, L., 2020. Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion. Plants, 9, 1302.
Hastie, T., Tibshirani, R., Friedman, J., 2009. Overview of supervised learning, in: Hastie, T., Tibshirani, R., Friedman, J. (Eds), The elements of statistical learning, Springer, New York, pp. 9-41.
Heidary, M., Douzals, J.P., Sinfort, C., Vallet, A., 2014. Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review. Crop Prot., 63, 120-130.
Herren, H.R., Bird, T.J., Nadel, D.J., 1987. Technology for automated aerial release of natural enemies of the cassava mealybug and cassava green mite. Int. J. Trop. Insect Sci., 8, 883-885.
Jensen, R.R., 1983. Biophysical remote sensing. Ann. Assoc. Am. Geogr., 73, 111-132.
Kim, J., Huebner, C., Reardon, R., Park, Y.-L., 2021. Spatiallytargeted biological control of mile-a-minute weed using Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system. J. Econ. Entomol., in press.
Mogili, U.R., Deepak, B.B.V.L., 2018. Review on application of drone systems in precision agriculture. Proc. Comp. Sci., 133, 502-509.
Moran, M.S., Inoue, Y., Barnes, E.M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ., 61, 319-346.
NGAC, 2016. Emerging technologies and the geospatial landscape. National Geospatial Advisory Committee, U.S. Department of Interior, Washington, D.C..
Park, Y.-L., Gururajan, S. Thistle, H., Chandran, R., Reardon, R., 2018. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system. Pest Manag. Sci., 74, 141-148.
Park, Y.-L., Tollefson, J.J., 2005. Spatial prediction of corn rootworm (Coleoptera: Chrysomelidae) adult emergence in Iowa cornfields. J. Econ. Entomol., 98, 121-128.
Roosjen, P.P., Kellenberger, B., Kooistra, L., Green, D.R., Fahrentrapp, J., 2020. Deep learning for automated detection of Drosophila suzukii: potential for UAVbased monitoring. Pest Manag. Sci., 76, 2994-3002.
Rosenthal, G., 2017. PPQ explores the tantalizing promise of unmanned air- craft systems. USDA APHIS. from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems (accessed on 15 February, 2020).
Russell, S., Norvig, P., 2020. Artificial Intelligence: A Modern Approach, 4th edition. Pearson, London.
Rustia, D.J.A., Chao, J.J., Chiu, L.Y., Wu, Y.F., Chung, J.Y., Hsu, J.C., Lin, T.T., 2021. Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method. J. Appl. Entomol., in press.
Taiz, L., Zeiger, E., 2006. Plant physiology, 4th edition. Sinauer Associates, Inc., Sunderland, MA.
Wang, A., Zhang, W., Wei, X., 2019. A review on weed detection using ground-based machine vision and image processing techniques. Comp. Electron. Agric., 158, 226-240.
Yang, Z., Rao, M.N., Elliott, N.C., Kindler, S.D., Popham, T.W., 2005. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comp. Electron. Agric., 47, 121-135.
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W., 2019. Monitoring plant diseases and pests through remote sensing technology: a review. Comp. Electron. Agric., 165, 104943.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.