최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대기 = Atmosphere, v.31 no.1, 2021년, pp.73 - 83
홍성재 (부산대학교 대기과학과) , 김재환 (부산대학교 대기과학과) , 최대성 (부산대학교 대기과학과) , 백강현 (부산대학교 기후연구센터)
Numerical weather prediction (NWP) models play an essential role in predicting weather factors, but using them is challenging due to various factors. To overcome the difficulties of NWP models, deep learning models have been deployed in weather forecasting by several recent studies. This study adapt...
Chen, J., J. Yu, M. Song, and V. Valdmanis, 2019: Factor decomposition and prediction of solar energy consumption in the United States. J. Clean. Prod., 234, 1210-1220, doi:10.1016/j.jclepro.2019.06.173.
Farzad, A., H. Mashayekhi, and H. Hassanpour, 2019: A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput. Applic., 31, 2507-2521, doi:10.1007/s00521-017-3210-6.
Feng, C., M. Cui, B.-M. Hodge, and J. Zhang, 2017: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Appl. Energ., 190, 1245-1257, doi:10.1016/j.apenergy.2017.01.043.
Gal, Y., and Z. Ghahramani, 2016: A theoretically grounded application of dropout in recurrent neural network. Preprints, 30th Conference on Neural Information Processing Systems, 14 pp [Available online at https://arxiv.org/abs/1512.05287].
Hewage, P., M. Trovati, E. Pereira, and A. Behera, 2021: Deep learning-based effective fine-grained weather forecasting model. Pattern Anal. Applic., 24, 343-366, doi: 10.1007/s10044-020-00898-1.
Holton, J., and G. Hakim, 2012: An Introduction to Dynamic Meteorology, 5th edition. Academic Press, 552 pp.
Hochreiter, S., and J. Schmidhuber, 1997: Long short-term memory. Neural Comput., 9, 1735-1780.
Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104, doi:10.1007/s13143-014-0029-2.
Jozefowicz, R., W. Zaremba, and I. Sutskever, 2015: An empirical exploration of recurrent network architectures. Proc., The 32nd International conference on machine learning, 37, ICML, 2342-2350, doi:10.5555/3045118.3045367.
Kiperwasser, E., and Y. Goldberg, 2016: Simple and accurate dependency parsing using bidirectional LSTM feature representations. T. Assoc. Comput. Linguist., 4, 313-327, doi:10.1162/tacl_a_00101.
KMA, 2020: Validation of Numerical Prediction System (2019). Tech. Rep., Numerical Modeling Center, Korea Meteorological Administration, 11-1360709-000001-10, 297 pp (in Korean).
Lea, C., M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, 2017: Temporal convolutional networks for action segmentation and detection. Proc., 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Institute of Electrical and Electronics Engineers Inc., 1003-1012, doi:10.1109/CVPR.2017.113.
Majhi, B., D. Naidu, A. P. Mishra, and S. C. Satapathy, 2020: Improved prediction of daily pan evaporation using Deep-LSTM model. Neural Comput. Applic., 32, 7823-7838, doi:10.1007/s00521-019-04127-7.
Poornima, S., and M. Pushpalatha, 2019: Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units. Atmosphere, 10, 668, doi:10.3390/atmos10110668.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning representations by back-propagating errors. Nature, 323, 533-536.
Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014: Dropout: a simple way to prevent neural networks from overfitting. J. Machine Learn. Res., 15, 1929-1958.
Tieleman, T., and G. Hinton, 2012: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 26-31.
Wang, H., and B. Raj, 2017: On the origin of deep learning. Preprint, arXiv, 72 pp [Available online at https://arxiv.org/abs/1702.07800].
Yang, B., S. Sun, J. Li, X. Lin, and Y. Tian, 2019: Traffic flow prediction using LSTM with feature enhancement. Neurocomputing, 332, 320-327, doi:10.1016/j.neucom.2018.12.016.
Zhang, Q., H. Wang, J. Dong, G. Zhong, and X. Sun, 2017: Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote S., 14, 1745-1749, doi:10.1109/LGRS.2017.2733548.
Zhang, T., S. Song, S. Li, L. Ma, S. Pan, and L. Han, 2019: Research on gas concentration prediction models based on LSTM multidimensional time series. Energies, 12, 161, doi:10.3390/en12010161.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.