$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

높은 에너지 밀도의 리튬이온 이차전지를 위한 PTFE 바인더를 적용한 고로딩 양극
Thick Positive Electrode using Polytetrafluorethylene (PTFE) Binder for High-Energy-Density Lithium-ion Batteries 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.24 no.2, 2021년, pp.28 - 33  

강정민 (한국산업기술대학교 생명화학공학과) ,  김형우 (한국산업기술대학교 생명화학공학과) ,  장영석 (한국산업기술대학교 생명화학공학과) ,  김해빈 (한국산업기술대학교 지식기반기술.에너지대학원) ,  류지헌 (한국산업기술대학교 지식기반기술.에너지대학원)

초록
AI-Helper 아이콘AI-Helper

이차전지에너지 밀도를 높이기 위한 방법으로 전극의 로딩을 높이는 방법에 대하여 많은 시도가 이루어지고 있다. 본 연구에서는 리튬이온 이차전지용 양극에서 보편적으로 사용되어 온 기존의 polyvinylidene fluoride (PVdF) 바인더가 아닌 polytetrafluoroethylene (PTFE) 바인더를 적용하여 고로딩의 LiNi0.5Co0.2Mn0.3O2 (NCM523) 양극을 제조하였다. 기존의 슬러리 공정이 아닌 PTFE 현탁액을 이용한 반죽공정을 통하여 로딩을 높인 두꺼운 전극이 용이하게 제조되었다. PTFE 및 PVdF 기반의 전극을 5.0 mAh/cm2의 로딩레벨로 각각 제조한 결과로 PTFE를 적용한 전극이 좀 더 우수한 사이클 수명과 속도특성을 지니고 있음을 확인하였다. PTFE 바인더를 사용한 반죽공정으로 제조된 전극은 기공도가 커서 전극밀도가 높지 않기 때문에 압연을 상온이 아닌 120℃ 이상의 고온에서 진행함으로써 기공도를 낮출 수 있었으나, 이에 따른 사이클 성능의 차이는 크지 않았다. 또한, 전극조성에서 도전재의 함량을 높임으로써 고로딩 전극의 사이클 수명을 소폭 향상시킬 수 있었다. PTFE 바인더 적용으로 고로딩 전극의 성능을 향상시킬 수 있었으나, 추가적인 개선이 필요할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Many researchers have increased the loading level of electrodes to improve the energy density of secondary batteries. In this study, high-loading NCM523 (LiNi0.5Co0.2Mn0.3O2) positive electrode is manufactured using a polytetrafluoroethylene (PTFE) binder, not the conventional polyvinylidene fluorid...

주제어

표/그림 (5)

참고문헌 (14)

  1. T.-H. Kim, J.-S. Park , S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012). 

  2. H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, 'Research on Advanced Materials for Li-ion Batteries', Adv. Mater., 21, 4593 (2009). 

  3. Y. Kuang, C. Chen, D. Kirsch, and L. Hu, 'Thick Electrode Batteries: Principles, Opportunities, and Challenges', Adv. Energy Mater., 9, 1901457 (2019). 

  4. M. Singh, J. Kaiser, and H. Hahn, 'Thick Electrodes for High Energy Lithium Ion Batteries', J. Electrochem. Soc., 162, A1196 (2015). 

  5. H. Kim and J.H. Ryu, 'Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO 2 Positive Electrode in Lithium-ion Batteries', J. Korean Electrochem. Soc., 23, 47 (2020). 

  6. M. Singh, J. Kaiser, and H. Hahn, 'Thick Electrodes for High Energy Lithium Ion Batteries', J. Electrochem. Soc., 162, A1196 (2015). 

  7. N.-S. Choi, S.-Y. Ha, Y. Lee, J.Y. Jang, M.-H. Jeong, W.C. Shin, and M. Ue, 'Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries', J. Electrochem. Sci. Technol, 6, 35 (2015). 

  8. Q. Wu, J.P. Zheng, M. Hendrickson, and E.J. Plichta, 'Dry Process for Fabricating Low Cost and High Performance Electrode for Energy Storage Devices', MRS Adv., 4, 857 (2019). 

  9. B. Ludwig, Z. Zheng, W. Shou, Y. Wang, and H. Pan, 'Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries', Sci. Rep., 6, 23150 (2016). 

  10. G. Schalicke, I. Landwehr, A. Dinter, K.-H. Pettinger, W. Haselrieder, and A. Kwade, 'Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries via Electrostatic Coating', Energy Technol., 8, 1900309 (2020). 

  11. F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki, T. Shiratsuchi, T. Tsujimura, Y. Aihara, and S. Kaskel, 'Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach', Energy Storage Mater., 21, 390 (2019). 

  12. H. Zheng, J. Li, X. Song, G. Liu, V.S. Battaglia, 'A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes', Electrochim. Acta, 71, 258 (2012). 

  13. G. Liu, H. Zheng, A.S. Simens, A.M. Minor, X. Song, and V.S. Battaglia, 'Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells', J. Electrochem. Soc., 154, A1129 (2007). 

  14. M. Singh, J. Kaiser, and H. Hahn, 'Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications', Batteries, 2, 35 (2016). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로