$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

복합 정제 공정에 따른 천연 흑연의 물리화학적 특성 변화가 리튬 이온 전지의 음극재 성능에 미치는 영향
Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery 원문보기

공업화학 = Applied chemistry for engineering, v.32 no.3, 2021년, pp.290 - 298  

안원준 (한국화학연구원 C1가스탄소융합연구센터) ,  황진웅 (한국화학연구원 C1가스탄소융합연구센터) ,  임지선 (한국화학연구원 C1가스탄소융합연구센터) ,  강석창 (한국화학연구원 C1가스탄소융합연구센터)

초록
AI-Helper 아이콘AI-Helper

천연 흑연의 음극재 적용을 위하여 정제 공정을 실시하였으며, 공정에 따른 흑연의 구조적 변화와 불순물 함량이 음극 특성에 미치는 영향을 고찰하였다. 천연 흑연은 불화암모늄과 황산을 동일 비로 하여 사용량을 달리한 산처리 및 온도(800~2500 ℃)를 달리한 열처리를 통하여 화학적/물리적으로 정제되었다. 산을 이용한 불순물 제거는 한계가 있었으며, 이후 진행된 2500 ℃까지의 열처리를 통해 Si과 같은 일부 원소를 제외하고 대부분의 불순물이 전량 제거되는 것을 확인하였다. 복합 정제 공정에 따라 제조된 흑연 음극재의 특성이 향상되었으며, 구조와 불순물 함량 변화는 각각 용량 및 속도 특성과 초기 쿨롱 효율에 지배적인 영향을 미쳤다. 복합 정제 공정은 흑연 구조를 향상시켰으며, 불순물을 효율적으로 제거하여 SEI층 형성 억제 및 Li+ 삽입 공간 확대를 통해 리튬 이온 전지의 성능을 향상시켰다.

Abstract AI-Helper 아이콘AI-Helper

A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physicall...

주제어

표/그림 (14)

참고문헌 (44)

  1. M. A. Hannan, M. H. Lipu, A.Hussain, and A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renew. Sust. Energ. Rev., 78, 834-854 (2017). 

  2. A. F. Gonzalez, N. H. Yang, and R. S. Liu, Silicon anode design for lithium-ion batteries: Progress and perspectives, J. Phys. Chem. C, 121(50), 27775-27787 (2017). 

  3. N. Dimov, S. Kugino, and M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations, Electrochim. Acta, 48(11), 1579-1587 (2003). 

  4. A. Manthiram, An outlook on lithium ion battery technology, ACS Central. Sci., 3(10), 1063-1069 (2017). 

  5. M. Nie, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy, J. Phys. Chem. C, 117(26), 13403-13412 (2013). 

  6. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, Sustain. Energ. Fuels., 4(11), 5387-5416 (2020). 

  7. B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen, G. Yi, L. Chen, J. Yu, Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172, 162-171 (2018). 

  8. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016). 

  9. H. Zhao, J. Ren, X. He, J. Li, C. Jiang, and C. Wan, Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries, Electrochim. Acta, 52(19), 6006-6011 (2007). 

  10. A. D. Jara, and J. Y. Kim, Chemical purification processes of the natural crystalline flake graphite for Li-ion Battery anodes, Mater. Today Commun., 25, 101437 (2020). 

  11. K. Zaghib, X. Song, A. Guerfi, R.Rioux, and K. Kinoshita, Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal., J. Power Sources, 119, 8-15 (2003). 

  12. A. D. Jara, A. Betemariam, G. Woldetinsae, and J. Y. Kim, Purification, application and current market trend of natural graphite: A review, Int. J. Min. Sci. Technol., 29(5), 671-689 (2019). 

  13. H. Wang, Q. Feng, X. Tang, and K. Liu, Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process, Sep. Sci. Technol., 51(14), 2465-2472 (2016). 

  14. N. A. Laziz, J. Abou-Rjeily, A. Darwiche, J. Toufaily, A. Outzourhit, F. Ghamouss, and M. T. Sougrati, Li-and Na-ion storage performance of natural graphite via simple flotation process, J. Electrochem. Sci. Technol., 9(4), 320-329 (2018). 

  15. B. G. Kim, S. K. Choi, C. L. Park, H. S. Chung, and H. S. Jeon, Inclusion of gangue mineral and its mechanical separation from expanded graphite, Part. Sci. Technol., 21(4), 341-351 (2003). 

  16. R. Lloyd and M. J. Turner, Method for the continuous chemical reduction and removal of mineral matter contained in carbon structure, US Patent 4,780,112 (1988). 

  17. T. Matsumoto and T. Hoshikawa., Method for manufacturing high purity graphite material. US Patent 5,419,889 (1995). 

  18. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., 204(3-4), 277-282 (1993). 

  19. X. Ding, R. Wang, X. Zhang, Y. Zhang, S. Deng, F. Shen, and L. Wang, A new magnetic expanded graphite for removal of oil leakage, Mar. Pollut. Bull., 81(1), 185-190 (2014). 

  20. H. Shi, J. Barker, M. Y. Saidi, and R. Koksbang, Structure and lithium intercalation properties of synthetic and natural graphite, J. Electrochem. Soc., 143(11), 3466-3472 (1996). 

  21. N. C. Gallego, C. I. Contescu, H. M. Meyer III, J. Y. Howe, R. A. Meisner, E. A. Payzant, M. J. Lance, S. Y. Yoon, M. Denlinger, D. L. Wood III, Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries, Carbon, 72, 393-401 (2014). 

  22. E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, The effect of acid treatment on the surface chemistry and topography of graphite, Carbon, 61, 124-133 (2013). 

  23. E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, Improved graphite anode for lithium-ion batteries chemically: Bonded solid electrolyte interface and nanochannel formation, J. Electrochem. Soc., 143(1), L4 (1996). 

  24. K. Leung, and J. L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 12(25), 6583-6586 (2010). 

  25. Y. Lin, Z. H. Huang, X. Yu, W. Shen, Y. Zheng, and F. Kang, Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid, Electrochim. Acta, 116, 170-174 (2014). 

  26. J. Christensen and J. Newman, Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery, J. Electrochem. Soc., 150(11), A1416 (2003). 

  27. I. Mochida, C. H. Ku, S. H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries, J. Power Sources, 75(2), 214-222 (1998). 

  28. U. Anik, S. Cevik, and M. Pumera, Effect of nitric acid "washing" procedure on electrochemical behavior of carbon nanotubes and glassy carbon µ-particles, Nanoscale Res. Lett., 5(5), 846-852 (2010). 

  29. T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J. Ozaki, and T. Kyotani, Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures, Carbon, 125, 146-155 (2017). 

  30. R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi, and S. Santucci, XPS studies on SiOx thin films, Appl. Surf. Sci., 70, 222-225 (1993). 

  31. T. S. Aaraes, E. Ringdalen, and M. Tangstad, Silicon carbide formation from methane and silicon monoxide, Sci. Rep., 10(1), 1-11 (2020). 

  32. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, Aluminum for plasmonics, ACS Nano, 8(1), 834-840 (2014). 

  33. Q. Wang, Y. Ma, L. Liu, S. Yao, W. Wu, Z. Wang, and K. K. Ostrikov, Plasma enabled Fe 2 O 3 /Fe 2 O 4 nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries, Nanomaterials, 10(4), 782-793 (2020). 

  34. S. Tougaard, Improved XPS analysis by visual inspection of the survey spectrum, Surf. Interface Anal., 50(6), 657-666 (2018). 

  35. B. Lesiak, L. Kover, J. Toth, J. Zemek, P. Jiricek, A. Kromka, and N. J. A. S. S. Rangam, C sp 2 /sp 3 hybridisations in carbon nanomaterials-XPS and (X) AES study, Appl. Surf. Sci., 452, 223-231 (2018). 

  36. S. Contarini, S. P. Howlett, C. Rizzo, and B. A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Appl. Surf. Sci., 51(3-4), 177-183 (1991). 

  37. S. Kundu, Y. Wang, W. Xia, and M. Muhler, Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study, J. Phys. Chem. C, 112(43), 16869-16878 (2008). 

  38. J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2(6), 1319-1324 (2000). 

  39. A. K. Friedman, W. Shi, Y. Losovyj, A. R. Siedle, and L. A. Baker, Mapping microscale chemical heterogeneity in Nafion membranes with X-ray photoelectron spectroscopy, J. Electrochem. Soc., 165 (11), H733 (2018). 

  40. J. W. Song, C. C. Nguyen, and S. W. Song, Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries, RSC Adv., 2(5), 2003-2009 (2012). 

  41. H. Zhu, M. H. A. Shiraz, L. Liu, Y. Hu, and J. Liu, A facile and low-cost Al 2 O 3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries, Nanotechnology, 32(14), 144001 (2021). 

  42. D. D. Hawn and B. M. DeKoven, Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides, Surf. Interface Anal., 10(2-3), 63-74 (1987). 

  43. B. T. Hang, I. Watanabe, T. Doi, S. Okada, and J. I. Yamaki, Electrochemical properties of nano-sized Fe 2 O 3 -loaded carbon as a lithium battery anod, J. Power Sources, 161(2), 1281-1287 (2006). 

  44. D. Bar-Tow, E. Peled, and L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc., 146(3), 824 (1999). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로