$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 기계학습을 이용한 기업가적 혁신성 예측 모델에 관한 연구
Machine Learning for Predicting Entrepreneurial Innovativeness 원문보기

벤처창업연구= Asia-Pacific journal of business and venturing, v.16 no.3, 2021년, pp.73 - 86  

정두희 (한동대학교 ICT창업학부) ,  윤진섭 (한동대학교 경영경제학부) ,  양성민 (한동대학교 AI Convergence & Entrepreneurship)

초록
AI-Helper 아이콘AI-Helper

이 연구의 목적은 기업가적 혁신성을 정확하게 예측하는 고도화된 분석 모델을 탐색하는 것이다. 기업가정신 연구 분야에서는 최초로, 데이터 과학적 접근방식에 해당되는 기계학습(Machine learning)을 이용해 기업가적 혁신성(entrepreneurial innovativeness)을 예측하는 모델을 제시한다. 예측모델을 구축하기 위하여 Global Entrepreneurship Monitor(GEM)의 62개국 22,099건 데이터를 이용한다. 27개 설명변수로 이뤄진 데이터 셋을 토대로 전통적 통계방법인 다중회귀분석과, 회귀트리, 랜덤포레스트, XG부스트, 인공신경망기계학습을 이용한 예측모델을 구축하고 각 모델의 성능을 비교한다. 모델의 성능 평가를 위해 RMSE(Root mean square error), MAE(Mean absolute error)와 상관관계(Correlation) 등 지표를 사용한다. 분석 결과 5가지 기계학습 기반 모델은 모두 전통적 방법에 비해 우수한 성능을 보였으며, 예측 성능이 가장 좋은 모델은 XG부스트였다. XG부스트를 통한 기업가적 혁신성 예측에 있어서 기여도가 높은 변수는 창업가의 기회인지 및 시장 확장의 교차항 변수이며, 이는 신시장에서 기회를 획득하고자 하는 유형의 창업기업이 높은 혁신성을 보인다는 점을 확인했다. 이 연구는 고도화된 분석방법인 기계학습을 이용해 새로운 예측모델을 제시, 기업가정신 연구의 시야를 확장했다는 점에서 의의를 지닌다.

Abstract AI-Helper 아이콘AI-Helper

The primary purpose of this paper is to explore the advanced models that predict entrepreneurial innovativeness most accurately. For the first time in the field of entrepreneurship research, it presents a model that predicts entrepreneurial innovativeness based on machine learning corresponding to d...

Keyword

참고문헌 (62)

  1. Ahlin, B., Drnovsek, M., & Hisrich, R. D.(2014). Entrepreneurs' creativity and firm innovation: the moderating role of entrepreneurial self-efficacy. Small Business Economics, 43(1), 101-117. 

  2. Antoncic, B., & Hisrich, R. D.(2004). Corporate entrepreneurship contingencies and organizational wealth creation. Journal of management development, 23, 518-550. 

  3. Autio, E., Pathak, S., & Wennberg, K.(2013). Consequences of cultural practices for entrepreneurial behaviors. Journal of International Business Studies, 44(4), 334-362. 

  4. Bogatyreva, K., Edelman, L. F., Manolova, T. S., Osiyevskyy, O., & Shirokova, G.(2019). When do entrepreneurial intentions lead to actions? The role of national culture. Journal of Business Research, 96, 309-321. 

  5. Botchkarev, A.(2018). Performance metrics(error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv preprint arXiv, 14, 45-79 

  6. Breiman, L.(2001). Random forests. Machine learning, 45(1), 5-32. 

  7. Breiman, L.(1996). Bagging predictors. Machine learning, 24(2), 123-140. 

  8. Chen, T., & Guestrin, C.(2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785-794. 

  9. Choudhury, P., Allen, R. T., & Endres, M. G.(2021). Machine learning for pattern discovery in management research. Strategic Management Journal, 42(1), 30-57. 

  10. Chulani, S., Boehm, B., & Steece, B.(1999). Bayesian analysis of empirical software engineering cost models. IEEE Transactions on Software Engineering, 25(4), 573-583. 

  11. Cliff, J. E., Jennings, P. D., & Greenwood, R.(2006). New to the game and questioning the rules: The experiences and beliefs of founders who start imitative versus innovative firms. Journal of Business Venturing, 21(5), 633-663. 

  12. Cyert, R. M., & March, J. G.(1963). A behavioral theory of the firm. Englewood Cliffs, NJ: Prentice Hall. 

  13. Delmar, F., & Shane, S.(2006). Does experience matter? The effect of founding team experience on the survival an sales of newly founded ventures. Strategic Organization, 4(3), 215-247. 

  14. Deniz, A., & Godekmerdan, L.(2012). Determining level of students' technological innovativeness: a case study. Procedia-Social and Behavioral Sciences, 47, 848-853. 

  15. Desyllas, P., & Hughes, A.(2010). Do high technology acquirers become more innovative?. Research Policy, 39(8), 1105-1121. 

  16. Dvir, D., Ben-David, A., Sadeh, A., & Shenhar, A. J.(2006). Critical managerial factors affecting defense projects success: A comparison between neural network and regression analysis. Engineering Applications of Artificial Intelligence, 19(5), 535-543. 

  17. Efron, B., & Tibshirani, R.(1985). The bootstrap method for assessing statistical accuracy. Behaviormetrika, 12(17), 1-35. 

  18. Farashah, A. D.(2015). The effects of demographic, cognitive and institutional factors on development of entrepreneurial intention: Toward a socio-cognitive model of entrepreneurial career. Journal of International Entrepreneurship, 13(4), 452-476. 

  19. Freund, Y., & Schapire, R. E.(1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. 

  20. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y.(2016). Deep learning(Vol. 1, No. 2). Cambridge: MIT press. 

  21. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang, G., Cai, J., & Chen, T.(2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. 

  22. Hailesilassie, T.(2016). Rule extraction algorithm for deep neural networks: A review. arXiv preprint arXiv, 14(7), 371-381. 

  23. Heyburn, R., Bond, R. R., Black, M., Mulvenna, M., Wallace, J., Rankin, D., & Cleland, B.(2018). Machine learning using synthetic and real data: similarity of evaluation metrics for different healthcare datasets and for different algorithms. In Data Science and Knowledge Engineering for Sensing Decision Support: Proceedings of the 13th International FLINS Conference (FLINS 2018), 11, 1281-1291. 

  24. Hurley, R. F. & Hult, T. M.(1998) Innovation, market orientation and organizational learning: an integration and empirical investigation. Journal of Marketing, 62(4), 42-54 

  25. Jordan, M. I., & Mitchell, T. M.(2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. 

  26. Kim, J. Y.(2019). Impact of entrepreneurial orientation on small-and medium-sized enterprises' entrepreneurial performance: the mediating role of entrepreneurial knowledge position. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 14(2), 83-93. 

  27. Koellinger, P.(2008). Why are some entrepreneurs more innovative than others?. Small Business Economics, 31(1), 21. 

  28. Kong, H. W.(2018). The Relationship between Entrepreneurial Experience and Entrepreneurship Education and Entrepreneurial Intention: Moderating Effect of Gender and Social Protection. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 13(6), 129-141. 

  29. Kriegeskorte, N., & Golan, T.(2019). Neural network models and deep learning. Current Biology, 29(7), R231-R236. 

  30. Kumari, K., & Yadav, S.(2018). Linear regression analysis study. Journal of the practice of Cardiovascular Sciences, 4(1), 33. 

  31. Kwak, J. M., Yang, Y. S., & Kim, M. S.(2017). A Study on the Influence of Personal Characteristics, Business Management Factors, and Capital Factors on Entrepreneurial Performance: In the Center of Ameliorating Small Businesses Supporting Policy by Government in Beauty Service Industry. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 12(3), 119-133. 

  32. Lechner, C., & Gudmundsson, S. V.(2014). Entrepreneurial orientation, firm strategy and small firm performance. International Small Business Journal, 32(1), 36-60. 

  33. Li, J., Qu, J., & Huang, Q.(2018). Why are some graduate entrepreneurs more innovative than others? The effect of human capital, psychological factor and entrepreneurial rewards on entrepreneurial innovativeness. Entrepreneurship & Regional Development, 30(5-6), 479-501. 

  34. Lin, W., Wu, Z., Lin, L., Wen, A., & Li, J.(2017). An ensemble random forest algorithm for insurance big data analysis. Ieee access, 5, 16568-16575. 

  35. Lumpkin, G. T., & Dess, G. G.(1996). Clarifying the entrepreneurial orientation construct and linking it to performance. Academy of management Review, 21(1), 135-172. 

  36. Marill, K. A.(2004). Advanced statistics: linear regression, part II: multiple linear regression. Academic emergency medicine, 11(1), 94-102. 

  37. Miralles, F., Giones, F., & Riverola, C.(2016). Evaluating the impact of prior experience in entrepreneurial intention. International Entrepreneurship and Management Journal, 12(3), 791-813. 

  38. Mitchell, R., & Frank, E.(2017). Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science, 3, e127-e163. 

  39. Mohassel, P., & Zhang, Y.(2017). Secureml: A system for scalable privacy-preserving machine learning. In 2017 IEEE Symposium on Security and Privacy(SP), 19-38. 

  40. Montebruno, P., Bennett, R. J., Smith, H., & Van Lieshout, C.(2020). Machine learning classification of entrepreneurs in British historical census data. Information Processing & Management, 57(3), 102210-102257. 

  41. Mueller, S. L., & Thomas, A. S.(2001). Culture and entrepreneurial potential: A nine country study of locus of control and innovativeness. Journal of business venturing, 16(1), 51-75. 

  42. Mueller, S.(2011). Increasing entrepreneurial intention: effective entrepreneurship course characteristics. International Journal of Entrepreneurship and Small Business, 13(1), 55-74. 

  43. Nasution, M. D. T. P., Siahaan, A. P. U., Rossanty, Y., & Aryza, S.(2018). Entrepreneurship Intention Prediction using Decision Tree and Support Vector Machine. In Proceedings of the Joint Workshop KO2PI and The 1st International Conference on Advance & Scientific Innovation, 135-148. 

  44. Nguyen, C.(2018). Demographic factors, family background and prior self-employment on entrepreneurial intention-Vietnamese business students are different: why?. Journal of Global Entrepreneurship Research, 8(1), 1-17. 

  45. Prufer, J., & Prufer, P.(2020). Data science for entrepreneurship research: studying demand dynamics for entrepreneurial skills in the Netherlands. Small Business Economics, 55(3), 651-672. 

  46. Putka, D. J., Beatty, A. S., & Reeder, M. C.(2018). Modern prediction methods: New perspectives on a common problem. Organizational Research Methods, 21(3), 689-732. 

  47. Rezaei, J., Ortt, R., & Scholten, V.(2012). Measuring entrepreneurship: Expert-based vs. data-based methodologies. Expert Systems with Applications, 39(4), 4063-4074. 

  48. Sabahi, S., & Parast, M. M.(2020). The impact of entrepreneurship orientation on project performance: A machine learning approach. International Journal of Production Economics, 226, 107621. 

  49. Samuel, A. L.(1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229. 

  50. Savolainen, T.(2008). Organizational Trust and Leadership as Driving Forces for Innovativeness. In Proceedings of the 13th International Conference on ISO9000 & TQM. Ho, S. (Ed.) Kuala Lumpur, MY 71-72. 

  51. Sciascia, S., Clinton, E., Nason, R. S., James, A. E., & Rivera-Algarin, J. O.(2013). Family communication and innovativeness in family firms. Family relations, 62(3), 429-442. 

  52. Soriano, D. R., Guzman-Alfonso, C., & Guzman-Cuevas, J.(2012). Entrepreneurial intention models as applied to Latin America. Journal of Organizational Change Management, 25(5), 721-735. 

  53. Tan, S. S., & Koh, H. C.(1996). Modelling entrepreneurial inclination with an artificial neural network. Journal of Small Business & Entrepreneurship, 13(2), 14-24. 

  54. Torgo, L.(1997). Functional models for regression tree leaves. In ICML, 97, 385-393. 

  55. Tu, J., Lin, A., Chen, H., Li, Y., & Li, C.(2019). Predict the entrepreneurial intention of fresh graduate students based on an adaptive support vector machine framework. Mathematical Problems in Engineering, 8, 76841-76855. 

  56. Unay, F. G., & Zehir, C.(2012). Innovation intelligence and entrepreneurship in the fashion industry. Procedia-Social and Behavioral Sciences, 41, 315-321. 

  57. Urban, B.(2017). Corporate entrepreneurship in South Africa: The role of organizational factors and entrepreneurial alertness in advancing innovativeness. Journal of Developmental Entrepreneurship, 22(03), 1750015. 

  58. Vaillant, Y., & Lafuente, E.(2019). The increased international propensity of serial entrepreneurs demonstrating ambidextrous strategic agility. International Marketing Review, 36(2), 239-259. 

  59. Wang, Y. R., & Gibson Jr, G. E.(2010). A study of preproject planning and project success using ANNs and regression models. Automation in Construction, 19(3), 341-346. 

  60. Wig, G. S., Laumann, T. O., Cohen, A. L., Power, J. D., Nelson, S. M., Glasser, M. F., Miezin, F. M., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.(2014). Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations. Cerebral cortex, 24(8), 2036-2054. 

  61. Yang, C. H., Motohashi, K., & Chen, J. R.(2009). Are new technology-based firms located on science parks really more innovative?: Evidence from Taiwan. Research policy, 38(1), 77-85. 

  62. Zhao, F.(2005). Exploring the synergy between entrepreneurship and innovation. International Journal of Entrepreneurial Behavior & Research, 11, 25-41. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로