$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 고지방식이 마우스의 간에서 Lactobacillus acidophilus NS1에 의한 글리코겐 함량 조절 효과
Effect of Lactobacillus acidophilus NS1 on the Hepatic Glycogen Contents in High-Fat Diet-Fed Mice 원문보기

Journal of dairy science and biotechnology, v.39 no.2, 2021년, pp.78 - 85  

양가람 (전남대학교 자연과학대학 생물학과) ,  김소영 (전남대학교 자연과학대학 생물학과) ,  김응석 (전남대학교 자연과학대학 생물학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 고지방식이 마우스에서 체중 감소, 혈당 감소 및 인슐린 저항성 개선 효과를 가지는 LNS1 균주의 간 내 글리코겐 함량에 미치는 영향을 조사하여 고지방식이에 의한 비정상적인 글리코겐 대사 개선을 위한 활용 가능성을 검토하고자 실시하였다. LNS1을 12주간 경구 투여한 고지방식이 마우스의 간에서 포도당 운반체 단백질인 GLUT2와 글리코겐 합성의 주요 효소인 GCK, GYS2의 유전자 발현 변화를 확인한 결과, LNS1의 경구 투여는 고지방식이 마우스에 비해 GLUT2와 GYS2의 유전자 발현을 각각 약 2배, 1.8배 증가시켰으며, GCK의 발현에는 영향을 주지 않는 것으로 확인되었다. 또한, GCK의 regulatory unit으로 작용하여 GCK의 활성을 억제하는 GCKR와 글리코겐 분해 과정의 주요 효소인 G6PC의 발현은 LNS1 투여에 의해 HFD마우스에 비해 각각 약 53%, 32% 감소함을 보였다. 간 조직에서의 결과와 마찬가지로 HepG2 세포에 LNS1-CM의 처리는 GLUT2와 GYS2의 유전자 발현을 약 1.9배, 2배 증가시켰으며, GCK의 발현 변화에는 영향을 주지 않는 것으로 확인되었다. GCKR과 G6PC의 유전자 발현 또한 LNS1-CM 처리에 의해 각각 77%, 47% 감소함을 보였다. 또한, 간 조직 내 글리코겐 함량은 고지방식이와 LNS1 투여를 병행한 마우스에서 고지방식이 마우스에 비해 약 1.5배 증가한 것으로 조사되었다. 위의 결과들을 종합해 볼 때, LNS1은 GLUT2, GYS2, GCKR와 G6PC의 발현 조절을 통해 간 조직내 글리코겐 함량을 증가시켜 고지방식이에 의한 글리코겐 대사 이상을 개선시키는 효과를 가지는 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Previously, we showed that oral administration of probiotics, Lactobacillus acidophilus NS1 (LNS1), improved insulin sensitivity in high-fat-diet-fed mice (HFD mice). Furthermore, LNS1-conditioned media (LNS1-CM) reduced HNF4α transcription activity and the expression of phosphoenol pyruvate ...

Keyword

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  •  본 연구에서는 LNS1이 간 내 글리코겐 대사에 미치는 효과를 검증하기 위하여 고지방식이 마우스에서 간의 글리코겐 대사에 참여하는 주요 유전자들의 발현과 글리코겐 함량에 대한 LNS1의 영향을 조사하였다
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Lu B, Bridges D, Yang Y, Fisher K, Cheng A, Chang L, et al. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity. Diabetes. 2014;63:2935-2948. 

  2. Bollen M, Keppens S, Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998;336:19-31. 

  3. Sumida Y, Yoneda M. Glycogen hepatopathy: an under-recognized hepatic complication of uncontrolled type 1 diabetes mellitus. Intern Med. 2018;57:1063-1064. 

  4. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13:572-587. 

  5. Abbadi S, Rodarte JJ, Abutaleb A, Lavell E, Smith CL, Ruff W, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res. 2014;12:1547-1559. 

  6. Nozaki Y, Petersen MC, Zhang D, Vatner DF, Perry RJ, Abulizi A, et al. Metabolic control analysis of hepatic glycogen synthesis in vivo. Proc Natl Acad Sci USA. 2020;117:8166-8176. 

  7. Adeva-Andany MM, Gonzalez-Lucan M, Donapetry-Garcia C, Fernandez-Fernandez C, Ameneiros-Rodriguez E. Glycogen metabolism in humans. BBA Clin. 2016;5:85-100. 

  8. Cho YH, Oh SJ. Comparative study of lactic acid bacteria for antioxidative activities. J Milk Sci Biotechnol. 2010;28:31-39. 

  9. Ayivi RD, Gyawali R, Krastanov A, Aljaloud SO, Worku M, Tahergorabi R, et al. Lactic acid bacteria: food safety and human health applications. Dairy. 2020;1:202-232. 

  10. Park SS, Lee YJ, Kang H, Yang G, Hong EJ, Lim JY, et al. Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through PPARγ signaling. Sci Rep. 2019;9:20152. 

  11. Park SS, Lee YJ, Song S, Kim B, Kang H, Oh S, et al. Lactobacillus acidophilus NS1 attenuates diet-induced obesity and fatty liver. J Endocrinol. 2018;237:87-100. 

  12. Park SS, Yang G, Kim E. Lactobacillus acidophilus NS1 reduces phosphoenolpyruvate carboxylase expression by regulating HNF4α transcriptional activity. Korean J Food Sci Anim Resour. 2017;37:529-534. 

  13. Song M, Park S, Lee H, Min B, Jung S, Park S, et al. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice. J Dairy Sci. 2015;98:1492-1501. 

  14. Li X, Zhang D, Vatner DF, Goedeke L, Hirabara SM, Zhang Y, et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci USA. 2020;117:32584-32593. 

  15. Gan KX, Wang C, Chen JH, Zhu CJ, Song GY. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J Gastroenterol. 2013;19:1572-1581. 

  16. Garcia-Arevalo M, Alonso-Magdalena P, Rebelo Dos Santos J, Quesada I, Carneiro EM, Nadal A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLOS One. 2014;9:e100214. 

  17. Mu S, Liu J, Guo W, Zhang S, Xiao X, Wang Z, et al. Roux-en-Y gastric bypass improves hepatic glucose metabolism involving down-regulation of protein tyrosine phosphatase 1B in obese rats. Obes Facts. 2017;10:191-206. 

  18. Sanghera DK, Hopkins R, Malone-Perez MW, Bejar C, Tan C, Mussa H, et al. Targeted sequencing of candidate genes of dyslipidemia in Punjabi Sikhs: population-specific rare variants in GCKR promote ectopic fat deposition. PLOS ONE. 2019;14:e0211661. 

  19. Li T, Owsley E, Matozel M, Hsu P, Novak CM, Chiang JYL. Transgenic expression of cholesterol 7α-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology. 2010;52:678-690. 

  20. Song J, Gao J, Du M, Mao X. Casein glycomacropeptide hydrolysates ameliorate hepatic insulin resistance of C57BL/6J mice challenged with high-fat diet. J Funct Foods. 2018;45:190-198. 

  21. Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 2015;11:508-524. 

  22. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol. 2009;156:885-898. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로