$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구
Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.37 no.8, 2021년, pp.37 - 49  

곽창원 (인하공업전문대학 토목환경과) ,  박인준 (한서대학교 인프라시스템학과)

초록
AI-Helper 아이콘AI-Helper

옹벽은 절, 성토부가 포함된 토지의 효율적 이용을 위하여 설치하는 대표적인 옹벽 구조물이다. 과거 국토개발 시기에는 시공성, 구조적 안정성 및 경제성에 치중하였다면, 최근에는 친환경적이고 내진 안정성을 갖춘 옹벽기술개발의 필요성이 증대되고 있는 실정이다. 본 연구에서는 자연석을 활용한 친환경적 옹벽 구조물(Eco-BELT)을 제시하고 지진 시 동적 거동특성을 2, 3차원 수치해석을 이용하여 분석하였다. 자연석과 배면 뒤채움 흙 사이에 형성되는 접촉면을 고려하여 수치해석에 적용하였으며 동적거동에 영향을 미치는 주요 변수로서 뒤채움재의 다짐도를 기준으로 다짐도 증가에 따른 동적거동을 분석하고 T형 후방지지물의 유무에 따른 내진성능 향상을 수치해석적으로 검토하였다. 그 결과 다짐도 증가 시 옹벽 수평변위가 최대 29.5% 감소하여 다짐도 증가에 따른 내진안정성 증대효과를 확인하고 T형 후방지지물 설치 시 최대 수평변위는 약 21.2~21.9%가 감소하는 것으로 산출되어 지진하중 재하 시 T형 후방지지물의 보강효과를 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural roc...

주제어

표/그림 (26)

참고문헌 (20)

  1. Changwei, Y., Shixian, Z., Zhang, J., and Bi, J. (2015), Seismic Stability Time-Frequency Analysis Method of Reinforced Retaining Wall, Mathematical Problems in Engineering, Vol.2015, No.1, Article ID 178692. 

  2. Cho, K. Y., Roh, K. T., and Seo, B. S. (2009), Natural Wall SystemsEsthetic View Element in a Downtown Facilities, Professional Engineer, Vol.42, No.4, pp.55-61. 

  3. D'Appolonia, D.J., D'Appolonia, E., and Brissette, R.F. (1970), Settlement of Spread Footings on Sand, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.96, No.SM2, pp.754-761. 

  4. Design Standard of Slope. (2016), Ministry of Land, Infrastructure and Transport, pp.74. 

  5. FLAC User manual (2005), Itasca Consulting Group. 

  6. Ha, W.J., Jeong J.H., Oak C.N., and Lee B.G. (2002), A Study on Retraining Wall using Natural Rock, Proceedings of Korean Society of Civil Engineers, pp.2521-2525. 

  7. Jo, S.B., Ha, J.G., Choo, Y.W., and Kim, D.S. (2013), A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test, Journal of the Korean Geotechnical Society, Vol.29, No.4, pp.33-44. 

  8. Jung, J.H. (2012), A study on Compaction and Settlement of Backfill Soil at Segmental Reinforced Earth, M.S. Thesis, Department of Civil Engineering, Graduate School, Yeungnam University, pp. 71-75. 

  9. Kim, D.B., Shin, E.C., and Park, J.J. (2019), Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test, Journal of the Korean Geo-Environmental Society, Vol.20, No.12, pp.15-26. 

  10. Korean Design Standard 11 80 05, Korea Construction Standard Center, pp.11. 

  11. Korean Design Standard 11 80 10, Korea Construction Standard Center, pp.4-6. 

  12. Korean Design Standard 11 80 15, Korea Construction Standard Center, pp. 3. 

  13. Korean Design Standard 17 00 00, Korea Construction Standard Center, pp.13-14. 

  14. Lee, S.M., Choi, C.H., and Shin, E.C. (2013), A Study of Connection Stability for Reinforced Retaining Wall Constructed with Soilbag with Varying Connection Strength, Journal of Korean Geosynthetics Society, Vol.12, No.1, pp.101-107. 

  15. Meyerhof, G. G. (1956), Penetration Tests and Bearing Capacity of Cohesionless Soils, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.82, No.1, pp.1-19. 

  16. Seismological Annual Report. (2020), Korea Meteorological Administration, pp.1-5. 

  17. Sitar, N., Mikola, R.G., and Candia, G. (2012), Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls, Proceedings of GeoCongress 2012At: Oakland, CA, pp. 335-358. 

  18. The Experiment of Vine for Covering the Traffic Noise Barrier. (1999), Korea Expressway Corporation Research Institute, pp.11. 

  19. Yoo, C.S., Kim, S.B., Jung, H.S., and Byun, J.S. (2006), Field Instrumentation of A Geosynthetic Reinforced Large Size Modular Block Wall, Proceedings of Korean Society of Civil Engineers, pp. 2871-2874. 

  20. Yoon, S.J., Kim, S.R., and Kim, M.M. (2002), Analysis of Influence Factors on the Seismic Earth Pressure Acting on Gravity Walls, Proceedings of Earthquake Engineering Society of Korea, pp. 75-82. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로