최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한원격탐사학회지 = Korean journal of remote sensing, v.38 no.6 pt.1, 2022년, pp.1191 - 1205
류민지 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 손상훈 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) , 김진수 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공)
Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, s...
Azhari, A., N.D.A. Halim, A.A.A. Mohtar, K. Aiyub, M.T. Latif, and M. Ketzel, 2021. Evaluation and prediction of PM 10 and PM 2.5 from road source emissions in Kuala Lumpur City Centre, Sustainability, 13(10): 5402. https://doi.org/10.3390/su13105402
Berrocal, V.J., Y. Guan, A. Muyskens, H. Wang, B.J. Reich, J.A. Mulholland, and H.H. Chang, 2020. A comparison of statistical and machine learning methods for creating national daily maps of ambient PM 2.5 concentration, Atmospheric Environment, 222: 117130. https://doi.org/10.1016/j.atmosenv.2019.117130
Byon, J-Y., S.-O. Hong, Y.-S. Park, and Y.-H. Kim, 2021. Evaluation of the Urban Heat Island Intensity in Seoul Predicted from KMA Local Analysis and Prediction System, Journal of the Korean Earth Science Society, 42(2): 135-148 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2021.42.2.135
Chae, S., J. Shin, S. Kwon, S. Lee, S. Kang, and D. Lee, 2021. PM 10 and PM 2.5 real-time prediction models using an interpolated convolutional neural network, Scientific Reports, 11(1): 1-9. https://doi.org/10.1038/s41598-021-91253-9
Chen, G., S. Li, L.D. Knibbs, N.A.S. Hamm, W. Cao, T. Li, J. Guo, H. Ren, M. J. Abramson, and Y. Guo, 2018a. A machine learning method to estimate PM 2.5 concentrations across China with remote sensing, meteorological and land use information, Science of the Total Environment, 636: 52-60. https://doi.org/10.1016/j.scitotenv.2018.04.251
Chen, G., Y. Li, Y. Zhou, C. Shi, Y. Guo, and Y. Liu, 2021. The comparison of AOD-based and non-AOD prediction models for daily PM 2.5 estimation in Guangdong province, China with poor AOD coverage, Environmental Research, 195: 110735. https://doi.org/10.1016/j.envres.2021.110735
Chen, G., Y. Wang, S. Li, W. Cao, H. Ren, L.D. Knibbs, M.J. Abramson, and Y. Guo, 2018b. Spatiotemporal patterns of PM 10 concentrations over China during 2005-2016: A satellite-based estimation using the random forests approach, Environmental Pollution, 242: 605-13. https://doi.org/10.1016/j.envpol.2018.07.012
Choi, S.I, J. An, and Y.M. Jo, 2018. Review of Analysis Principle of Fine Dust, Korean Industrial Chemistry News, 21(2): 16-23 (in Korean with English abstract).
Guo, J., F. Xia, Y. Zhang, H. Liu, J. Li, M. Lou, J. He, Y. Yan, F. Wang, M. Min, and P. Zhai, 2017. Impact of diurnal variability and meteorological factors on the PM 2.5 -AOD relationship: Implications for PM 2.5 remote sensing, Environmental Pollution, 221: 94-104. https://doi.org/10.1016/j.envpol.2016.11.043
Ha, J-E., H.-C. Shin, and Z.-K. Lee, 2017. Korean Text Classification Using Randomforest and XGBoost Focusing on Seoul Metropolitan Civil Complaint Data, The Journal of Bigdata, 2(2): 95-104 (in Korean with English abstract).
Hwang, I.C., 2018. Particulate Matter Management Policy of Seoul: Achievements and Limitations, The Korea Association for Policy Studies, 27(2): 27-51 (in Korean with English abstract).
Hwang, S., T.H. Kim, M. Kim, and J. Choi, 2022. A Study on the Time Series Characteristics of High-concentration Fine Dust Generation by Local Indicator of Temporal Burstiness, Journal of the Korean Geographical Society, 57(1): 97-108 (in Korean with English abstract). https://doi.org/10.22776/kgs.2021.57.1.97
Kim, B-Y., Y.-K. Lim, and J-W. Cha, 2022. Short-term prediction of particulate matter (PM 10 and PM 2.5 ) in Seoul, South Korea using tree-based machine learning algorithms, Atmospheric Pollution Research, 13(10): 101547. https://doi.org/10.1016/j.apr.2022.101547
Kim, E. and J. Moon, 2021. Analyzing the Temporal Pattern of Particulate Matter Emission Multipliers: Development of the Quarterly Input-Output Model, Journal of Environmental Policy and Administration, 29(2): 1-29 (in Korean with English abstract). http://dx.doi.org/10.15301/jepa.2021.29.2.1
Kim, H., 2020. The Prediction of PM 2.5 in Seoul through XGBoost Ensemble, Journal of The Korean Data Analysis Society, 22(4): 1661-1671 (in Korean with English abstract). https://doi.org/10.37727/jkdas.2020.22.4.1661
Kim, Y. and K. Chang, 2021. Comparison and analysis of prediction performance of fine particulate matter (PM 2.5 ) based on deep learning algorithm, Journal of Convergence for Information Technology, 11(3): 7-13 (in Korean with English abstract). https://doi.org/10.22156/CS4SMB.2021.11.03.007
Lee, D. and S. Lee, 2020. Hourly Prediction of Particulate Matter (PM 2.5 ) Concentration Using Time Series Data and Random Forest, Korea Information Processing Society-Transactions on Software and Data Engineering, 9(4): 129-36 (in Korean with English abstract). https://doi.org/10.3745/KTSDE.2020.9.4.129
Lee, S.-B., C.-H. Kang, D.-S. Jung, H.-J. Ko, H.-B. Kim, Y.-S. Oh, and H.-L. Kang, 2010. Composition and pollution characteristics of TSP, PM 2.5 atmospheric aerosols at Gosan site, Jeju Island, Analytical Science and Technology, 23(4): 372-382 (in Korean with English abstract).
Lin, L., Y. Liang, L. Liu, Y. Zhang, D. Xie, F. Yin, and T. Ashraf, 2022. Estimating PM 2.5 Concentrations Using the Machine Learning RF-XGBoost Model in Guanzhong Urban Agglomeration, China, Remote Sensing, 14(20): 5239. https://doi.org/10.3390/rs14205239
Joharestani M. Z., C. Cao, X. Ni, B. Bashir, and S. Talebiesfandarani, 2019. PM 2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data, Atmosphere, 10(7): 373. https://doi.org/10.3390/atmos10070373
Park, D.-U. and K.-C. Ha, 2008. Characteristics of PM 10 , PM 2.5 , CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea, Environment International, 34(5): 629-634. https://doi.org/10.1016/j.envint.2007.12.007
Park, S., M. Kim, and J. Im, 2021. Estimation of Ground-level PM 10 and PM 2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data, Korean Journal of Remote Sensing, 37(2): 321-335 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2021.37.2.11
Park, S. and H. Shin, 2017. Analysis of the Factors Influencing PM 2.5 in Korea: Focusing on Seasonal Factors, Journal of Environmental Policy and Administration, 25(1): 227-248 (in Korean with English abstract). https://doi.org/10.15301/jepa.2017.25.1.227
Peng, J., H. Han, Y. Yi, H. Huang, and L. Xie, 2022. Machine learning and deep learning modeling and simulation for predicting PM 2.5 concentrations, Chemosphere, 308: 136353. https://doi.org/10.1016/j.chemosphere.2022.136353
Shogrkhodaei, S.Z., S.V. Razavi-Termeh, and A. Fathnia, 2021. Spatio-temporal modeling of PM 2.5 risk mapping using three machine learning algorithms, Environmental Pollution, 289: 117859. https://doi.org/10.1016/j.envpol.2021.117859
Sihag, P., V. Kumar, F.R. Afghan, S.M. Pandhiani, and A. Keshavarzi, 2019. Predictive modeling of PM 2.5 using soft computing techniques: case study-Faridabad, Haryana, India, Air Quality, Atmosphere & Health, 12(12): 1511-1520. https://doi.org/10.1007/s11869-019-00755-z
Son, S. and J. Kim, 2021. Vulnerability Assessment for Fine Particulate Matter (PM 2.5 ) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM 2.5 Concentrations, Korean Journal of Remote Sensing, 37(6-2): 1881-1890 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2021.37.6.2.10
Song, B.-G. and K.-H. Park, 2022. Analysis of PM 2.5 Pattern Considering Land Use Types and Meteorological Factors - Focused on Changwon National Industrial Complex -, Journal of the Korean Association of Geographic Information Studies, 25(2): 1-17 (in Korean with English abstract). https://doi.org/10.11108/kagis.2022.25.2.001
Stafoggia, M., T. Bellander, S. Bucci, M. Davoli, K. de Hoogh, F. de' Donato, C. Gariazzo, A. Lyapustin, P. Michelozzi, M. Renzi, M. Scortichini, A. Shtein, G. Viegi, I. Kloog, and J. Schwartz, 2019. Estimation of daily PM 10 and PM 2.5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model, Environment International, 124: 170-179. https://doi.org/10.1016/j.envint.2019.01.016
Sung, S.H., S. Kim, and M.H. Ryu, 2020. A Comparative Study on the Performance of Machine Learning Models for the Prediction of Fine Dust: Focusing on Domestic and Overseas Factors, Innovation Studies, 15(4): 339-357 (in Korean with English abstract). https://doi.org/10.46251/INNOS.2020.11.15.4.339
Xie, Y., Y. Wang, K. Zhang, W. Dong, B. Lv, and Y. Bai, 2015. Daily estimation of ground-level PM 2.5 concentrations over Beijing using 3 km resolution MODIS AOD, Environmental Science and Technology, 49(20): 12280-12288. https://doi.org/10.1021/acs.est.5b01413
Xin, J., Y. Wang, Z. Li, P. Wang, W.M. Hao, B.L. Nordgren, S. Wang, G. Liu, L. Wang, and T. Wen. 2007. Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005, Journal of Geophysical Research: Atmospheres, 112(D5). https://doi.org/10.1029/2006JD007075
Yoo, H.-G., J.-W. Hong, J. Hong, S. Sung, E.J. Yoon, J.-H. Park, and J.-H. Lee, 2020. Impact of Meteorological Conditions on the PM 2.5 and PM 10 concentrations in Seoul, Journal of Climate Change Research, 11(5-2): 521-528 (in Korean with English abstract). https://doi.org/10.15531/ksccr.2020.11.5.521
Zhang, D., L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, 2018. A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, 6: 21020-21031. https://doi.org/10.1109/ACCESS.2018.2818678
Zhang, H., R.M. Hoff, and J.A. Engel-Cox, 2009. The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM 2.5 over the United States: a geographical comparison by US Environmental Protection Agency regions, Journal of the Air & Waste Management Association, 59(11): 1358-1369. https://doi.org/10.3155/1047-3289.59.11.1358
Zhang, H. and S. Kondragunta, 2021. Daily and hourly surface PM 2.5 estimation from satellite AOD, Earth and Space Science, 8(3): e2020EA001599. https://doi.org/10.1029/2020EA001599
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.