$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enhanced Production of C30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T 원문보기

Journal of microbiology and biotechnology, v.32 no.7, 2022년, pp.892 - 901  

Siziya, Inonge Noni (Division of Bioengineering, Incheon National University) ,  Yoon, Deok Jun (Department of Bioengineering and Nano-Bioengineering, Incheon National University) ,  Kim, Mibang (Department of Bioengineering and Nano-Bioengineering, Incheon National University) ,  Seo, Myung-Ji (Division of Bioengineering, Incheon National University)

Abstract AI-Helper 아이콘AI-Helper

The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection...

주제어

참고문헌 (44)

  1. 1 Armstrong GA 1997 Genetics of eubacterial carotenoid biosynthesis: a colorful tale Annu. Rev. Microbiol. 51 629 659 10.1146/annurev.micro.51.1.629 9343362 

  2. 2 Maoka T 2020 Carotenoids as natural functional pigments J. Nat. Med. 74 1 16 10.1007/s11418-019-01364-x 31588965 

  3. 3 Valla AR Cartier DL Labia R 2004 Chemistry of natural retinoids and carotenoids: challenges for the future Curr. Org. Synth. 1 167 209 10.2174/1570179043485394 

  4. 4 Li L Furubayashi M Wang S Maoka T Kawai-Noma S Saito K 2019 Genetically engineered biosynthetic pathways for nonnatural C 60 carotenoids using C 5 -elongases and C 50 -cyclases in Escherichia coli Sci. Rep. 9 2982 10.1038/s41598-019-39289-w 30814614 

  5. 5 Seel W Baust D Sons D Albers M Etzbach L Fuss J 2020 Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus Sci. Rep. 10 330 10.1038/s41598-019-57006-5 31941915 

  6. 6 Martínez-Cámara S Ibañez A Rubio S Barreiro C Barredo JL 2021 Main carotenoids produced by microorganisms Encyclopedia 1 1223 1245 10.3390/encyclopedia1040093 

  7. 7 Takemura M Takagi C Aikawa M Araki K Choi SK Itaya M 2021 Heterologous production of novel and rare C 30 -carotenoids using Planococcus carotenoid biosynthesis genes Microb. Cell Fact. 20 194 10.1186/s12934-021-01683-3 34627253 

  8. 8 Hagi T Kobayashi M Kawamoto S Shima J Nomura M 2013 Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis J. Appl. Microbiol. 114 1763 1771 10.1111/jam.12182 23473548 

  9. 9 Garrido-Fernández J Maldonado-Barragán A Caballero-Guerrero B Hornero-Méndez D Ruiz-Barba JL 2010 Carotenoid production in Lactobacillus plantarum Int. J. Food Microbiol. 140 34 39 10.1016/j.ijfoodmicro.2010.02.015 20303609 

  10. 10 Turpin W Renaud C Avallone S Hammoumi A Guyot JP Humblot C 2016 PCR of crtNM combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria Syst. Appl. Microbiol. 39 115 121 10.1016/j.syapm.2015.12.003 26776108 

  11. 11 Marshall JH Wilmoth GJ 1981 Pigments of Staphylococcus aureus , a series of triterpenoid carotenoids J. Bacteriol. 147 900 913 10.1128/jb.147.3.900-913.1981 7275936 

  12. 12 Makarova K Slesarev A Wolf Y Sorokin A Mirkin B Koonin E 2006 Comparative genomics of the lactic acid bacteria Proc. Natl. Acad. Sci. USA 103 15611 15616 10.1073/pnas.0607117103 17030793 

  13. 13 Steiger S Perez-Fons L Cutting SM Fraser PD Sandmann G 2015 Annotation and functional assignment of the genes for the C 30 carotenoid pathways from the genomes of two bacteria: Bacillus indicus and Bacillus firmus Microbiology 161 194 202 10.1099/mic.0.083519-0 25326460 

  14. 14 Liu H Xu W Chang X Qin T Yin Y Yang Q 2016 4,4′-Diaponeurosporene, a C 30 carotenoid, effectively activates dendritic cells via CD36 and NF-κB signaling in a ROS independent manner Oncotarget 7 40978 40991 10.18632/oncotarget.9800 27276712 

  15. 15 Jing Y Liu H Xu W Yang Q 2019 4,4′‐Diaponeurosporene‐producing Bacillus subtilis promotes the development of the mucosal immune system of the piglet gut Anat. Rec. 302 1800 1807 10.1002/ar.24102 30809953 

  16. 16 Liu H Xu W Yu Q Yang Q 2017 4,4′-Diaponeurosporene-producing Bacillus subtilis increased mouse resistance against Salmonella typhimurium infection in a CD36-dependent manner Front. Immunol. 8 483 10.3389/fimmu.2017.00483 28491061 

  17. 17 Jiang Y Zhang J Zhao X Zhao W Yu Z Chen C 2018 Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K 25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain Biosci. Biotechnol. Biochem. 82 1225 1233 10.1080/09168451.2018.1453293 29564960 

  18. 18 Rijkers GT Bengmark S Enck P Haller D Herz U Kalliomaki M 2010 Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research J. Nutr. 140 671S 676S 10.3945/jn.109.113779 20130080 

  19. 19 Li S Zhao Y Zhang L Zhang X Huang L Li D 2012 Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods Food Chem. 135 1914 1919 10.1016/j.foodchem.2012.06.048 22953940 

  20. 20 Kim M Seo DH Park YS Cha IT Seo MJ 2019 Isolation of Lactobacillus plantarum subsp. plantarum producing C 30 carotenoid 4,4′-diaponeurosporene and the assessment of its antioxidant activity J. Microbiol. Biotechnol. 29 1925 1930 10.4014/jmb.1909.09007 31635447 

  21. 21 Kim M Jung DH Seo DH Chung WH Seo MJ 2020 Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C 30 carotenoid biosynthetic pathway 3 Biotech 10 150 10.1007/s13205-020-2149-y 32181112 

  22. 22 Chandi GK Gill BS 2011 Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review Int. J. Food Prop. 14 503 513 10.1080/10942910903256956 

  23. 23 López JC Pérez JS Sevilla JF Fernández FA Grima EM Chisti Y 2003 Production of lovastatin by Aspergillus terreus : effects of the C:N ratio and the principal nutrients on growth and metabolite production Enzyme Microb. Technol. 33 270 277 10.1016/S0141-0229(03)00130-3 

  24. 24 Kennedy M Krouse D 1999 Strategies for improving fermentation medium performance: a review J. Ind. Microbiol. Biotechnol. 23 456 475 10.1038/sj.jim.2900755 

  25. 25 Nor NM Mohamad R Foo HL Rahim RA 2010 Improvement of folate biosynthesis by lactic acid bacteria using response surface methodology Food Technol. Biotechnol. 48 243 250 

  26. 26 Chauhan K Trivedi U Patel KC 2007 Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice Bioresour. Technol. 98 98 103 10.1016/j.biortech.2005.11.017 16386897 

  27. 27 Tung YT Lee BH Liu CF Pan TM 2011 Optimization of culture condition for ACEI and GABA production by lactic acid bacteria J. Food Sci. 76 M585 M591 10.1111/j.1750-3841.2011.02379.x 22416709 

  28. 28 Elsanhoty RM Al-Turki I Ramadan MF 2012 Screening of medium components by Plackett-Burman design for carotenoid production using date ( Phoenix dactylifera ) wastes Ind. Crops Prod. 36 313 320 10.1016/j.indcrop.2011.10.013 

  29. 29 Prabhu S Rekha PD Young CC Hameed A Lin SY Arun AB 2013 Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties Appl. Biochem. Biotechnol. 171 817 831 10.1007/s12010-013-0397-6 23900617 

  30. 30 Li XR Tian GQ Shen HJ Liu JZ 2015 Metabolic engineering of Escherichia coli to produce zeaxanthin J. Ind. Microbiol. Biotechnol. 42 627 636 10.1007/s10295-014-1565-6 25533633 

  31. 31 El-Banna AA El-Razek AMA El-Mahdy AR 2012 Some factors affecting the production of carotenoids by Rhodotorula glutinis var. glutinis Food Nutr. Sci. 3 64 71 10.4236/fns.2012.31011 

  32. 32 Takaichi S Ishidsu J 1993 Influence of growth temperature on compositions of carotenoids and fatty acids from carotenoid glucoside ester and from cellular lipids in Rhodococcus rhodochrous RNMSI Biosci. Biotechnol. Biochem. 57 1886 1889 10.1271/bbb.57.1886 

  33. 33 Hujanen M Linko S Linko YY Leisola M 2001 Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441 Appl. Microbiol. Biotechnol. 56 126 130 10.1007/s002530000501 11499919 

  34. 34 Shi F Zhan W Li Y Wang X 2014 Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma World J. Microbiol. Biotechnol. 30 125 133 10.1007/s11274-013-1428-8 23861041 

  35. 35 Igreja WS Maia FdA Lopes AS Chisté RC 2021 Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: a review Int. J. Mol. Sci. 22 8819 10.3390/ijms22168819 34445525 

  36. 36 Elloumi W Jebali A Maalej A Chamkha M Sayadi S 2020 Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp Biomolecules 10 1515 10.3390/biom10111515 33171918 

  37. 37 Pisal DS Lele SS 2005 Carotenoid production from microalga, Dunaliella salina Indian J. Biotechnol. 4 476 483 

  38. 38 Saejung C Apaiwong P 2015 Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2 Biotechnol. Bioprocess Eng. 20 701 707 10.1007/s12257-015-0015-2 

  39. 39 Sowmya R Sachindra NM 2015 Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition Biocatal. Agric. Biotechnol. 4 559 567 10.1016/j.bcab.2015.08.018 

  40. 40 Calegari-Santos R Diogo RA Fontana JD Bonfim TMB 2016 Carotenoid production by halophilic archaea under different culture conditions Curr. Microbiol. 72 641 651 10.1007/s00284-015-0974-8 26750123 

  41. 41 Ghelich R Jahannama MR Abdizadeh H Torknik FS Vaezi MR 2019 Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers Compos. B Eng. 166 527 541 10.1016/j.compositesb.2019.01.094 

  42. 42 Boon CS McClements DJ Weiss J Decker EA 2010 Factors influencing the chemical stability of carotenoids in foods Crit. Rev. Food Sci. Nutr. 50 515 532 10.1080/10408390802565889 20544442 

  43. 43 Aksu Z Eren AT 2007 Production of carotenoids by the isolated yeast of Rhodotorula glutinis Biochem. Eng. J. 35 107 113 10.1016/j.bej.2007.01.004 

  44. 44 Miyoshi A Rochat T Gratadoux JJ Le Loir Y Oliveira SC Langella P 2003 Oxidative stress in Lactococcus lactis Genet. Mol. Res. 2 348 359 15011138 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로