$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

2차원 결정성 탄소 소재의 최근 이차전지 소재 개발 동향: 그래핀(graphene)과 그라파인(graphyne)의 이차전지 개발 최근 동향
Progress in Recent Research of 2D and Crystalline Carbon Materials in Secondary-ion Battery Application 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.25 no.4, 2022년, pp.162 - 173  

이혁진 (공주대학교 화학교육과) ,  봉성율 (공주대학교 화학교육과)

초록
AI-Helper 아이콘AI-Helper

우리의 삶에 있어 새로운 물질의 개발/발견은 전 세계의 환경 및 에너지 문제를 해결하는 데 필수적인 열쇠이다. 이러한 관점에서 결정성 탄소계 2차원 재료는 벌집 또는 sp/sp2 하이브리드 구조탄소 소재전기 전도도, 화학적 안정성, 표면 공학 등 다양한 관점에서 오랜 시간 동안 연구되어 왔다. 특히, 그래핀을 포함한 새로운 2차원 탄소 소재 개발은 신재생 에너지 분야에서 수십 년 동안 지속적으로 개발되고 있다. 구체, 입방체 등의 다양한 구조 형태의 금속나노입자와 함께 복합화하여 시너지 효과를 낼 수 있는 탄소동소체가 연구되고 있으며, 이를 통하여 신재생 에너지 분야의 디바이스 성능이 획기적으로 향상되고 있다. 본 총설에서는 2D 탄소동소체 재료, 그래핀 및 그라파인의 연구 방향과 재생 에너지 분야의 성능을 향상시키기 위한 응용 방법을 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The development of new materials is an essential key for unraveling the environmental and energy problems all over the world. Among the various application materials in this area, crystalline and two-dimensional carbon materials have been studied from points of view such as electrical conductivity, ...

주제어

표/그림 (8)

참고문헌 (66)

  1. X. Tang, S. Lv, K. Jiang, G. Zhou, and X. Liu, Recent development of ionic liquid-based electrolytes in lithiumion batteries, J. Power Sources, 542, 231792 (2022). 

  2. X. Jiang, Y. Chen, X. Meng, W. Cao, C. Liu, Q. Huang, N. Naik, V. Murugadoss, M. Huang, and Z. Guo, The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review, Carbon, 191, 448-470 (2022). 

  3. C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118, 7744-7803 (2018). 

  4. M. Inagaki and F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A, 2, 13193-13206 (2014). 

  5. A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S. H. M. Jafri, and H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications, Materials, 15, 1012 (2022). 

  6. M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, Synthesis of graphene, Int. Nano Lett., 6, 65-83 (2016). 

  7. L. Sathishkumar, V. Dhanapal, S. Ravi, R. Saratha, and N. Sugumaran, Compatibility of lithium ion phosphate battery in solar off grid application, J. Electrochem. Sci. Technol., 13(4), 472-478 (2022). 

  8. H. Kim, D. I. Kim, and W.-S. Yoon, Enhancing electrochemical performance of Co(OH)2 anode materials by introducing graphene for next-generation liion batteries, J. Electrochem. Sci. Technol., 13(3), 398-406 (2022). 

  9. M.-S. Shin, C.-K. Choi, M.-S. Park, and S.-M. Lee, Spherical silicon/CNT/carbon composite wrapped with graphene as an anode material for lithium-ion batteries, J. Electrochem. Sci. Technol., 13(1), 159-166 (2022). 

  10. X. Lu, M. Yu, H. Huang, and R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology, 10, 269 (1999). 

  11. Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett., 86, 073104 (2005). 

  12. A.M. Affoune, B.L.V. Prasad, H. Sato, T. Enoki, Y. Kaburagi, and Y. Hishiyama, Experimental evidence of a single nano-graphene, Chem. Phys. Lett., 348, 17-20 (2001). 

  13. S. Bong, Y.-R. Kim, I. Kim, S. Woo, S. Uhm, J. Lee, and H. Kim, Graphene supported electrocatalysts for methanol oxidation, Electrochem. Commun., 12, 129-131 (2010). 

  14. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, and Z. Liu, Chemical vapour deposition, Nat. Rev. Methods Primer, 1, 5 (2021). 

  15. M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed., 36(8), 836-838 (1997). 

  16. J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures1, Org. Lett., 2(7), 969-972 (2000). 

  17. W. B. Wan and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "Star" and "Trefoil" graphdiyne substructures via sixfold crosscoupling of hexaiodobenzene, J. Org. Chem., 66(11), 3893-3901 (2001). 

  18. X. Li, B. Li, Y. He, and F. Kang, A review of graphynes: Properties, applications and synthesis, New Carbon Mater., 35, 619-629 (2020). 

  19. X. Gao, H. Liu, D. Wang, and J. Zhang, Graphdiyne: synthesis, properties, and applications, Chem. Soc. Rev., 48, 908-936 (2019). 

  20. J. Zhou, J. Li, Z. Liu, and J. Zhang, Exploring approaches for the synthesis of few-layered graphdiyne, Adv. Mater., 31, 1803758 (2019). 

  21. D. Malko, C. Neiss, F. Vines, and A. Gorling, Competition for graphene: Graphynes with directiondependent dirac cones, Phys. Rev. Lett., 108, 086804 (2012). 

  22. H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal., 2, 781-794 (2012). 

  23. X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochem. Commun., 13, 822-825 (2011). 

  24. S. H. Yang, S.-K. Park, and Y. C. Kang, Metal-organic frameworks derived FeSe 2 @C nanorods interconnected by N-doped graphene nanosheets as advanced anode materials for Na-ion batteries, Int. J. Energy Res., 45, 20909-20920 (2021). 

  25. S. Yu, B. Guo, T. Zeng, H. Qu, J. Yang, and J. Bai, Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective, Compos. Part B Eng., 246, 110232 (2022). 

  26. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011). 

  27. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9, 1752-1758 (2009). 

  28. A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, 4, 6337-6342 (2010). 

  29. S. M. Shinde, E. Kano, G. Kalita, M. Takeguchi, A. Hashimoto, and M. Tanemura, Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition, Carbon, 96, 448-453 (2016). 

  30. M. Son, S.-S. Chee, S.-Y. Kim, W. Lee, Y. H. Kim, B.-Y. Oh, J. Y. Hwang, B. H. Lee, and M.- H. Ham, High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition, Carbon, 159, 579-585 (2020). 

  31. J. Xu, G. Dong, C. Jin, M. Huang, and L. Guan, Sulfur and nitrogen Co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction, ChemSusChem, 6, 493-499 (2013). 

  32. F. Hassani, H. Tavakol, F. Keshavarzipour, and A. Javaheri, A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition, RSC Adv., 6, 27158-27163 (2016). 

  33. J. Zhou, Z. Wang, Y. Chen, J. Liu, B. Zheng, W. Zhang, and Y. Li, Growth and properties of largearea sulfur-doped graphene films, J. Mater. Chem. C, 5, 7944-7949 (2017). 

  34. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Sorr, L. Balicas, F. Liu, and P. M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430-435 (2010). 

  35. T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid, New J. Chem., 36, 1385-1391 (2012). 

  36. Z. Zhai, H. Shen, J. Chen, X. Li, and Y. Li, Metal-free synthesis of boron-doped graphene glass by hot-filament chemical vapor deposition for wave energy harvesting, ACS Appl. Mater. Interfaces, 12(2), 2805-2815 (2020). 

  37. H. Kim, O. Renault, A. Tyurnina, J.-P. Simonato, D. Rouchon, and D. Mariolle, Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption, Appl. Phys. Lett., 105, 011605 (2014). 

  38. Z.-S. Wu, W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS Nano, 5, 5463-5471 (2011). 

  39. G. H. Jun, S. H. Jin, B. Lee, B. H. Kim, W.-S. Chae, S. H. Hong, and S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulkheterojunction organic solar cells, Energy Environ. Sci., 6, 3000-3006 (2013). 

  40. Z.-H. Sheng, L. Shao, J.-J. Cen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano, 5, 4350-4358 (2011). 

  41. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through electrothermal reactions with ammonia, Science, 324, 768-771 (2009). 

  42. S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Mullen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634-3640 (2012). 

  43. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, and J. W. Choi, Nitrogendoped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 11, 2472-2477 (2011). 

  44. Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 20, 7491-7496 (2010). 

  45. Y. Wang, F. Yu, M. Zhu, C. Ma, D. Zhao, C. Wang, A. Zhou, B. Dai, J. Ji, and X. Guo, Ndoping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction, J. Mater. Chem. A, 6, 2011-2017 (2018). 

  46. S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, and L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors, Chem. Commun., 52, 10988-10991 (2016). 

  47. V. K. Abdelkader-Fernandez, M. Domingo-Garcia, F. J. Lopez-Garzon, D. M. Fernandes, C. Freire, M. D. L. Torre, M. Melguizo, M. L. Godino-Salido, and M. Perez-Mendoza, Expanding graphene properties by a simple S-doping methodology based on cold CS 2 plasma, Carbon, 144, 269-279 (2019). 

  48. J. Guo, W. Wang, Y. Li, J. Liang, Q. Zhu, J. Li, and X. Wang, Room-temperature synthesis of waterdispersible sulfur-doped reduced graphene oxide without stabilizers, RSC Adv., 10, 26460-26466 (2020). 

  49. D. W. Chang, H.-J. Choi, and J.-B. Baek, Wetchemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. A, 3, 7659-7665 (2015). 

  50. P. Wu, Z. Cai, Y. Gao, H. Zhang, and C. Cai, Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chem. Commun., 47, 11327-11329 (2011). 

  51. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv., 2, 4498-4506 (2012). 

  52. Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, and X. Feng, Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction, Carbon, 62, 296-301 (2013). 

  53. N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon, 48(1), 255-259 (2010). 

  54. Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, and Z. Zhang, Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption, Carbon, 148, 204-213 (2019). 

  55. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21(46), 4726-4730 (2009). 

  56. T. V. Pham, J.-G. Kim, J. Y. Jung, J. H. Kim, H. Cho, T. H. Seo, H. Lee, N. D. Kim, and M. J. Kim, High areal capacitance of N-doped graphene synthesized by arc discharge, Adv. Funct. Mater., 29(48), 1905511 (2019). 

  57. C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode, J. Power Sources, 342, 157-164 (2017). 

  58. I.-Y. Jeon, S. Zhang, L. Zhang, H.-J. Choi, J.-M. Seo, Z. Xia, L. Dai, and J.-B. Baek, Edgeselectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect, Adv. Mater., 25(42), 6138-6145 (2013). 

  59. H. N. Tien and S. H. Hur, Synthesis of highly durable sulfur doped graphite nanoplatelet electrocatalyst by a fast and simple wet ball milling process, Mater. Lett., 161, 399-403 (2015). 

  60. J. Xu, J. Shui, J. Wang, M. Wang, H.-K. Liu, S. X. Dou, I.-Y. Jeon, J.-M. Seo, J.-B. Baek, and L. Dai, Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries, ACS Nano, 8, 10920-10930 (2014). 

  61. J. Xu, I.-Y. Jeon, J.-M. Seo, S. Dou, L. Dai, and J.-B. Baek, Edge-selectively halogenated graphene nanoplatelets (XGnPs, X Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries, Adv. Mater., 26(43), 7317-7323 (2014). 

  62. X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jin, S. Wang, L. Huang, J. Qiu, and Z. Lin, Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells, Angew. Chem., 130, 4772-4776 (2018). 

  63. J. Ma, Y. Yuan, S. Wu, J. Y. Lee, and B. Kang, γ-Graphyne nanotubes as promising lithium-ion battery anodes, Appl. Surf. Sci., 531, 147343 (2020). 

  64. Q. Zhang, C. Tang, W. Zhu, and C. Cheng, Strainenhanced Li storage and diffusion on the graphyne as the anode material in the Li-ion battery, J. Phys. Chem. C, 122(40), 22838-22848 (2018). 

  65. B. Wu, X. Jia, Y. Wang, J. Hu,E. Gao, Z. Liu, Superflexible C68-graphyne as a promising anode material for lithium-ion batteries, J. Mater. Chem A, 7, 17357-17365 (2019). 

  66. X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y.-M. Kim, E. Yun, E. H. Baek, D. H. Ryu, and H. Lee, Constructing two-dimensional holey graphyne with unusual annulative π-extension, Matter, 5(7), 2306-2318 (2022) 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로