$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동백 유박 에탄올추출물 및 분획물의 항산화 활성
Anti-oxidant activities of ethanol extract and fractions from defatted Camellia japonica L. seeds 원문보기

Journal of applied biological chemistry, v.66, 2023년, pp.503 - 511  

박원표 (Department of Food Science, Gyeongsang National University) ,  김난경 (Department of Food Science, Gyeongsang National University) ,  한석희 (Department of Food Science, Gyeongsang National University) ,  이상현 (Department of Plant Science and Technology, Chung-Ang University) ,  김지현 (Department of Food Science, Gyeongsang National University) ,  최진상 (Department of Food Science, Gyeongsang National University)

초록
AI-Helper 아이콘AI-Helper

본 연구는 동백나무(Camellia japonica L.) 유박 추출물 및 분획물의 in vitro 항산화 활성에 대해 조사하였다. 동백나무 유박은 에탄올을 사용하여 추출하였으며, 이 후 부탄올(BuOH), 에틸아세테이트(EtOAc), 클로로포름 및 헥산을 이용하여 분획물을 조제하였다. 동백 유박 추출물 및 분획물의 항산화 활성을 평가하기 위해 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), hydroxyl radical, superoxide anion (O2-) radical 소거능을 측정하였다. 동백 유박 추출물 및 분획물은 농도의존적으로 DPPH, ABTS+ 및 O2- radical 소거능을 증가시켜 항산화 활성을 나타내었다. 특히 동백 유박 BuOH 분획물은 다른 추출물 및 분획물에 비해 가장 높은 radical 소거능을 나타내었다. 동백 유박 BuOH 분획물의 총 폴리페놀 및 플라보노이드 함량은 각각 23.26 mg GAE/g 및 32.39 mg QE/g이었으며, 이는 다른 추출물 및 분획물보다 높은 수치임을 알 수 있었다. 동백 유박 BuOH 분획물 및 EtOAc 분획물의 cameliaside B 함량은 각각 102.37, 165.05 ㎍/g임을 확인하여 다른 추출물 및 분획물에 비해 높은 수치를 나타냄을 알 수 있었다. 따라서 동백 유박 추출 및 분획물 중에서 BuOH 분획물 및 EtOA c 분획물은 다른 추출 및 분획물에 비해 radical 소거능이 우수할 뿐 아니라 항산화 물질 함유량이 높아, 항산화 기능성 소재로 활용될 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The aim of this study was to investigate in vitro antioxidant activities of defatted Camellia japonica L. seeds (DCJS). The DCJS were extracted using ethanol and then fractionated with butanol (BuOH), ethyl acetate (EtOAc), chloroform, and hexane. To evaluate antioxidant activity of extract and frac...

주제어

참고문헌 (44)

  1. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7): 592-607. doi: 10.1016/j.tips.2017.04.005? 

  2. Jakubczyk K, Dec K, Kaldunska J, Kawczuga D, Kochman J, Janda K (2020) Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 48(284): 124-127? 

  3. Alkadi H (2020) A review on free radicals and antioxidants. infect disord drug targets. 20(1): 16-26. doi: 10.2174/1871526518666180628124323? 

  4. Engwa GA, EnNwekegwa FN, Nkeh-Chungag BN (2022) Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med 28(1): 114-128? 

  5. Neha K, Haider MR, Pathak A, Yar MS (2019) Medicinal prospects of antioxidants: A review. Eur J Med Chem 178: 687-704. doi: 10.1016/j.ejmech.2019.06.010? 

  6. Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE (2022) Health benefits of polyphenols: A concise review. J Food Biochem 46(10): e14264. doi: 10.1111/jfbc.14264? 

  7. Yoon IS, Park DH, Kim JE, Yoo JC, Bae MS, Oh DS, Shim JH, Choi CY, An KW, Kim EI, Kim GY, Cho SS (2017) Identification of the biologically active constituents of Camellia japonica leaf and antihyperuricemic effect in vitro and in vivo. Int J Mol Med 39(6): 1613-1620. doi: 10.3892/ijmm.2017.2973? 

  8. Yoshikawa M, Morikawa T, Asao Y, Fujiwara E, Nakamura S, Matsuda H (2007) Medicinal flowers. XV. The structures of noroleanane- and oleanane-type triterpene oligoglycosides with gastroprotective and platelet aggregation activities from flower buds of Camellia japonica. Chem Pharm Bull 55: 606-612. doi: 10.1248/cpb.55.606? 

  9. Piao MJ, Yoo ES, Koh YS, Kang HK, Kim J, Kim YJ, Kang HH, Hyun JW (2011) Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int J Mol Sci 12(4): 2618-2630. doi: 10.3390/ijms12042618? 

  10. Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY (2021) Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. Environ Sci Pollut Res Int 28(40): 57192-57206. doi: 10.1007/s11356-021-14530-0? 

  11. Ha SY, Jung JY, Yang JK (2021) Camellia japonica essential oil inhibits α-MSH-induced melanin production and tyrosinase activity in B16F10 melanoma cells. Evid Based Complement Alternat Med 2021: 6328767. doi: 10.1155/2021/6328767? 

  12. Lee SY, Bae CS, Seo NS, Na CS, Yoo HY, Oh DS, Bae MS, Kwon MS, Cho SS, Park DH (2019) Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid. Phytomedicine 57: 84-94. doi: 10.1016/j.phymed.2018.12.004? 

  13. Kim S, Jung E, Shin S, Kim M, Kim YS, Lee J, Park D (2012) Antiinflammatory activity of Camellia japonica oil. BMB Rep 45(3): 177-182. doi: 10.5483/BMBRep.2012.45.3.177? 

  14. Kang SK, Kim YD, Choi OJ (1998) Proximate, saponin, and amino acid compositions in Camellia (Camellia japonica L.) seeds and defatted camellia seeds. J Korean Soc Food Sci Nutr 27(2): 227-231? 

  15. Ko J, Rho T, Yoon KD (2020) Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr Res 495: 108101. doi: 10.1016/j.carres.2020.108101? 

  16. Kang SK, Kim YD, Choi OJ (1998) Antimicrobial activity of defatted camellia (Camellia japonica L.) seeds extract. J Korean Soc Food Sci Nutr 27(2): 232-238? 

  17. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshica T, Okuda T (1989) Effects of the interation of tannins with coexisting substances, VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021? 

  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231-1237. doi: 10.1016/s0891-5849(98)00315-3? 

  19. Kim JW, Minamikawa T (1997) Hydroxy radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem 61: 118-123. doi: 10.1271/bbb.61.118? 

  20. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Ciophys Res Commun 46(2): 849-854. doi: 10.1016/s0006-291x(72)80218-3? 

  21. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243? 

  22. Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. doi: 10.1016/S0378-8741(99)00189-0? 

  23. Lee HS, Choi JH, Cui L, Li Y, Yang JM, Yun JJ, Jung JE, Choi W, Yoon KC (2017) Anti-inflammatory and antioxidative effects of camellia japonica on human corneal epithelial cells and experimental dry eye: in vivo and in vitro study. Invest Ophthalmol Vis Sci 58(2): 1196-1207. doi: 10.1167/iovs.16-20634? 

  24. Mizutani T, Masaki H (2014) Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Exp Dermatol 23: 23-26. doi: 10.1111/exd.12395? 

  25. Lu W, Xv L, Wen J (2019) Protective effect of extract of the Camellia japonica L. on cerebral ischemia-reperfusion injury in rats. Arq Neuropsiquiatr 77(1): 39-46. doi: 10.1590/0004-282X20180146? 

  26. Kim JH, Yang H, Kim KK (2022) Camellia japonica root extract increases antioxidant genes by induction of NRF2 in hela cells. Plants (Basel) 11(21): 2914. doi: 10.3390/plants11212914? 

  27. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4): 412-422. doi: 10.1007/s13197-011-0251-1? 

  28. Shin JH, Lee HG, Kang MJ, Lee SJ, Sung NJ (2010) Anti-oxidant activity of solvent fraction from black garlic. J Korean Soc Food Sci Nutr 39(7): 933-940. doi: 10.3746/jkfn.2010.39.7.933? 

  29. Kwak CS, Choi HI (2015) In vitro antioxidant and anti-inflammatory activities of ethanol extract and sequential fractions of flowers of Prunus persica in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 44: 1439-1449. doi: 10.3746/jkfn.2015.44.10.1439? 

  30. Zhao Z (2023) Hydroxyl radical generations form the physiologically relevant Fenton-like reactions. Free Radic Biol Med 208: 510-515. doi: 10.1016/j.freeradbiomed.2023.09.013? 

  31. Chiste RC, Freitas M, Mercadante AZ, Fernandes E (2015) Superoxide anion radical: generation and detection in cellular and non-cellular systems. Curr Med Chem 22(37): 4234-4256. doi:10.2174/0929867322666151029104311? 

  32. Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1): 1-37. doi: 10.1007/s00204-015-1579-5? 

  33. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12): 1231-1246. doi: 10.3390/nu2121231? 

  34. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383: 132531. doi: 10.1016/j.foodchem.2022.132531? 

  35. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2): 75-100. doi: 10.1007/s12013-009-9043-x? 

  36. Pereira AG, Garcia-Perez P, Cassani L, Chamorro F, Cao H, Barba FJ, Simal-Gandara J, Prieto MA (2022) Camellia japonica: A phytochemical perspective and current applications facing its industrial exploitation. Food Chem X 13: 100258. doi: 10.1016/j.fochx.2022.100258? 

  37. Ko J, Rho T, Yoon KD (2020) Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr Res 495: 108101. doi:10.1016/j.carres.2020.108101? 

  38. Sekine T, Arita J, Yamaguchi A, Saito K, Okonogi S, Morisaki N, Iwasaki S, Murakoshi I (1991) Two flavonol glycosides from seeds of Camellia sinensis. Phytochemistry 30(3): 991-995. doi: 10.1016/0031-9422(91)85293-9? 

  39. Kang JY, Youn YD, Kim BK (2022) Validation of HPLC-DAD method for quantitative analysis of camelliaside B in Camellia japonica seed extract. J Agric Life Sci 56(5): 161-169? 

  40. Nagata T, Tsushida T, Hamaya E, Enoki N, Manabe S, Nishino C (1985) Camellidins, antifungal saponins isolated from Camellia japonica. Agric Biol Chem 49(4): 1181-1186? 

  41. Rho T, Choi SJ, Kil HW, Ko J, Yoon KD (2019) Separation of nine novel triterpene saponins from Camellia japonica seeds using high-performance countercurrent chromatography and reversed-phase high-performance liquid chromatography. Phytochem Anal 30(2): 226-236. doi: 10.1002/pca.2808? 

  42. Matsuda H, Morikawa T, Nakamura S, Muraoka O, Yoshikawa M (2023) New biofunctional effects of oleanane-type triterpene saponins. J Nat Med 77(4): 644-664. doi: 10.1007/s11418-023-01730-w.? 

  43. Hu JL, Nie SP, Huang DF, Li C, Xie MY (2012) Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. Int J food Sci Technol 47(8): 1676-1687? 

  44. Saenjum C, Pattananandecha T, Nakagawa K (2020) Detection of antioxidant phytochemicals isolated from Camellia japonica seeds using HPLC and EPR imaging. Antioxidants 9(6):493. doi: 10.3390/antiox9060493 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로