최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Sensors, v.20 no.9, 2020년, pp.2498 -
Chambers, Robert D. , Yoder, Nathanael C.
In this paper, we present and benchmark FilterNet, a flexible deep learning architecture for time series classification tasks, such as activity recognition via multichannel sensor data. It adapts popular convolutional neural network (CNN) and long short-term memory (LSTM) motifs which have excelled ...
1. Yang Q. Wu X. 10 challenging problems in data mining research Int. J. Inf. Technol. Decis. Mak. 2006 5 597 604 10.1142/S0219622006002258
2. Altilio R. Andreasi G. Panella M. A Classification Approach to Modeling Financial Time Series Neural Advances in Processing Nonlinear Dynamic Signals Esposito A. Faundez-Zanuy M. Morabito F.C. Pasero E. Springer International Publishing Cham, Switzerland 2019 97 106 978-3-319-95098-3
3. Susto G.A. Cenedese A. Terzi M. Chapter 9―Time-Series Classification Methods: Review and Applications to Power Systems Data Big Data Application in Power Systems Arghandeh R. Zhou Y. Elsevier Amsterdam, The Netherlands 2018 179 220
4. Rajkomar A. Oren E. Chen K. Dai A.M. Hajaj N. Hardt M. Liu P.J. Liu X. Marcus J. Sun M. Scalable and accurate deep learning with electronic health records Npj Digit. Med. 2018 1 1 10 10.1038/s41746-018-0029-1 31304287
5. Nwe T.L. Dat T.H. Ma B. Convolutional neural network with multi-task learning scheme for acoustic scene classification Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) Kuala Lumpur, Malaysia 12?15 December 2017 1347 1350
6. Lotte F. Bougrain L. Cichocki A. Clerc M. Congedo M. Rakotomamonjy A. Yger F. A review of classification algorithms for EEG-based brain?computer interfaces: A 10 year update J. Neural Eng. 2018 15 031005 10.1088/1741-2552/aab2f2 29488902
7. Wang J. Chen Y. Hao S. Peng X. Hu L. Deep Learning for Sensor-based Activity Recognition: A Survey Pattern Recognit. Lett. 2019 119 3 11 10.1016/j.patrec.2018.02.010
8. Bagnall A. Lines J. Bostrom A. Large J. Keogh E. The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances Data Min. Knowl. Discov. 2017 31 606 660 10.1007/s10618-016-0483-9 30930678
9. Fortino G. Galzarano S. Gravina R. Li W. A framework for collaborative computing and multi-sensor data fusion in body sensor networks Inf. Fusion 2015 22 50 70 10.1016/j.inffus.2014.03.005
10. Dau H.A. Bagnall A. Kamgar K. Yeh C.-C.M. Zhu Y. Gharghabi S. Ratanamahatana C.A. Keogh E. The UCR Time Series Archive IEEE/CAA J. Autom. Sin. 2019 6 1293 1305 10.1109/JAS.2019.1911747
11. Dua D. Graff C. UCI Machine Learning Repository Available online: http://archive.ics.uci.edu/ml (accessed on 25 March 2020)
13. Qin Z. Hu L. Zhang N. Chen D. Zhang K. Qin Z. Choo K.-K.R. Learning-Aided User Identification Using Smartphone Sensors for Smart Homes IEEE Internet Things J. 2019 6 7760 7772 10.1109/JIOT.2019.2900862
14. Kim Y. Toomajian B. Hand Gesture Recognition Using Micro-Doppler Signatures with Convolutional Neural Network IEEE Access 2016 4 7125 7130 10.1109/ACCESS.2016.2617282
15. Rautaray S.S. Agrawal A. Vision based hand gesture recognition for human computer interaction: A survey Artif. Intell. Rev. 2015 43 1 54 10.1007/s10462-012-9356-9
16. Pantelopoulos A. Bourbakis N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010 40 1 12 10.1109/TSMCC.2009.2032660
17. Vepakomma P. De D. Das S.K. Bhansali S. A-Wristocracy: Deep learning on wrist-worn sensing for recognition of user complex activities Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) Cambridge, MA, USA 9?12 June 2015 1 6
18. Pet Insight Project Available online: https://www.petinsight.com (accessed on 16 December 2019)
19. Whistle Available online: https://www.whistle.com/ (accessed on 16 December 2019)
20. Lines J. Taylor S. Bagnall A. Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles ACM Trans Knowl. Discov Data 2018 12 1 35 10.1145/3182382
21. Ismail Fawaz H. Forestier G. Weber J. Idoumghar L. Muller P.-A. Deep learning for time series classification: A review Data Min. Knowl. Discov. 2019 33 917 963 10.1007/s10618-019-00619-1
22. Alsheikh M.A. Selim A. Niyato D. Doyle L. Lin S. Tan H.-P. Deep activity recognition models with triaxial accelerometers Proceedings of the Workshops at the Thirtieth AAAI Conference on Artificial Intelligence Phoenix, AZ, USA 12?13 February 2016 8 13
23. Plotz T. Hammerla N.Y. Olivier P. Feature learning for activity recognition in ubiquitous computing Proceedings of the IJCAI 2011―22nd International Joint Conference on Artificial Intelligence Barcelona, Spain 16?22 July 2011 1729 1734
24. Bengio Y. Deep Learning of Representations: Looking Forward Proceedings of the Statistical Language and Speech Processing Dediu A.-H. Martin-Vide C. Mitkov R. Truthe B. Springer Berlin/Heidelberg, Germany 2013 1 37
25. Yang J.B. Nguyen M.N. San P.P. Li X.L. Krishnaswamy S. Deep convolutional neural networks on multichannel time series for human activity recognition Proceedings of the 24th International Conference on Artificial Intelligence Buenos Aires, Argentina 25?31 July 2015 3995 4001
26. Yazdanbakhsh O. Dick S. Multivariate Time Series Classification using Dilated Convolutional Neural Network arXiv 2019 1905.01697
27. Hatami N. Gavet Y. Debayle J. Classification of time-series images using deep convolutional neural networks Proceedings of the Tenth International Conference on Machine Vision (ICMV 2017), International Society for Optics and Photonics Vienna, Austria 13 April 2018 Volume 10696 106960Y
28. Qin Z. Zhang Y. Meng S. Qin Z. Choo K.-K.R. Imaging and fusing time series for wearable sensor-based human activity recognition Inf. Fusion 2020 53 80 87 10.1016/j.inffus.2019.06.014
29. Thanaraj K.P. Parvathavarthini B. Tanik U.J. Rajinikanth V. Kadry S. Kamalanand K. Implementation of Deep Neural Networks to Classify EEG Signals using Gramian Angular Summation Field for Epilepsy Diagnosis arXiv 2020 2003.04534
30. Bengio Y. Simard P. Frasconi P. Learning long-term dependencies with gradient descent is difficult IEEE Trans. Neural Netw. 1994 5 157 166 10.1109/72.279181 18267787
31. Hochreiter S. Schmidhuber J. Long Short-Term Memory Neural Comput. 1997 9 1735 1780 10.1162/neco.1997.9.8.1735 9377276
32. Lipton Z.C. Berkowitz J. Elkan C. A Critical Review of Recurrent Neural Networks for Sequence Learning arXiv 2015 1506.00019
33. Ordonez F.J. Roggen D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition Sensors 2016 16 115 10.3390/s16010115 26797612
34. Chavarriaga R. Sagha H. Calatroni A. Digumarti S.T. Troster G. Millan J. del R.; Roggen, D. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition Pattern Recognit. Lett. 2013 34 2033 2042 10.1016/j.patrec.2012.12.014
35. Zappi P. Lombriser C. Stiefmeier T. Farella E. Roggen D. Benini L. Troster G. Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection Proceedings of the Wireless Sensor Networks Verdone R. Springer Berlin/Heidelberg, Germany 2008 17 33
36. Hammerla N.Y. Halloran S. Plotz T. Deep, convolutional, and recurrent models for human activity recognition using wearables Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence New York, NY, USA 9?15 July 2016 1533 1540
37. Inoue M. Inoue S. Nishida T. Deep Recurrent Neural Network for Mobile Human Activity Recognition with High Throughput Artif Life Robot 2018 23 173 185 10.1007/s10015-017-0422-x
38. Edel M. Koppe E. Binarized-BLSTM-RNN based Human Activity Recognition Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares Alcala de Henares, Spain 4?7 October 2016 1 7
39. Guan Y. Ploetz T. Ensembles of Deep LSTM Learners for Activity Recognition using Wearables Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017 1 1 28 10.1145/3090076
40. Ronneberger O. Fischer P. Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation Proceedings of the Medical Image Computing and Computer-Assisted Intervention―MICCAI 2015 Navab N. Hornegger J. Wells W.M. Frangi A.F. Springer International Publishing Cham, Switzerland 2015 234 241
41. Humayun A.I. Ghaffarzadegan S. Feng Z. Hasan T. Learning Front-end Filter-bank Parameters using Convolutional Neural Networks for Abnormal Heart Sound Detection Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Honolulu, HI, USA 17?21 July 2018 1408 1411
42. Goodfellow I. Bengio Y. Courville A. Deep Learning The MIT Press Cambridge, MA, USA 2016 978-0-262-03561-3
44. UCI Machine Learning Repository: OPPORTUNITY Activity Recognition Data Set Available online: https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition (accessed on 4 December 2019)
45. nhammerla/deepHAR Available online: https://github.com/nhammerla/deepHAR (accessed on 5 December 2019)
46. Sussexwearlab Sussexwearlab/DeepConvLSTM Available online: https://github.com/sussexwearlab/DeepConvLSTM (accessed on 9 December 2019)
47. Paszke A. Gross S. Massa F. Lerer A. Bradbury J. Chanan G. Killeen T. Lin Z. Gimelshein N. Antiga L. PyTorch: An Imperative Style, High-Performance Deep Learning Library Advances in Neural Information Processing Systems 32 Wallach H. Larochelle H. Beygelzimer A. Alche-Buc F. Fox E. Garnett R. Curran Associates Inc. Red Hook, NY, USA 2019 8024 8035
48. Hevesi P. Phev8/ward-metrics Available online: https://github.com/phev8/ward-metrics (accessed on 6 December 2019)
49. Ward J.A. Lukowicz P. Gellersen H.W. Performance metrics for activity recognition ACM Trans. Intell. Syst. Technol. 2011 2 1 23 10.1145/1889681.1889687
50. Amazon EC2-P2 Instances Available online: https://aws.amazon.com/ec2/instance-types/p2/ (accessed on 6 December 2019)
51. Zhao Y. Yang R. Chevalier G. Xu X. Zhang Z. Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors Math. Probl. Eng. 2018 2018 10.1155/2018/7316954
52. Long J. Sun W. Yang Z. Raymond O.I. Asymmetric Residual Neural Network for Accurate Human Activity Recognition Information 2019 10 203 10.3390/info10060203
53. Murahari V.S. Plotz T. On Attention Models for Human Activity Recognition Proceedings of the 2018 ACM International Symposium on Wearable Computers ACM New York, NY, USA 2018 100 103
54. Hatami N. Chira C. Classifiers with a reject option for early time-series classification Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL) Singapore 16?19 April 2013 9 16
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.