$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Fruit Quality Monitoring with Smart Packaging 원문보기

Sensors, v.21 no.4, 2021년, pp.1509 -   

Alam, Arif U. ,  Rathi, Pranali ,  Beshai, Heba ,  Sarabha, Gursimran K. ,  Deen, M. Jamal

Abstract AI-Helper 아이콘AI-Helper

Smart packaging of fresh produce is an emerging technology toward reduction of waste and preservation of consumer health and safety. Smart packaging systems also help to prolong the shelf life of perishable foods during transport and mass storage, which are difficult to regulate otherwise. The use o...

Keyword

참고문헌 (98)

  1. 1. Ishangulyyev R. Kim S. Lee S. Understanding Food Loss and Waste―Why Are We Losing and Wasting Food? Foods 2019 8 297 10.3390/foods8080297 31362396 

  2. 2. Nicoletti M. Serrone P. Del Intelligent and Smart Packaging Future Foods InTech London, UK 2017 

  3. 3. Morone P. Koutinas A. Gathergood N. Arshadi M. Matharu A. Food waste: Challenges and opportunities for enhancing the emerging bio-economy J. Clean. Prod. 2019 221 10 16 10.1016/j.jclepro.2019.02.258 

  4. 4. Mohebi E. Marquez L. Intelligent packaging in meat industry: An overview of existing solutions J. Food Sci. Technol. 2015 52 3947 3964 10.1007/s13197-014-1588-z 26139863 

  5. 5. Slavin J.L. Loyd B. Health Benefits of Fruits and Vegetables Adv. Nutr. 2012 3 506 516 10.3945/an.112.002154 22797986 

  6. 6. Top 3 Consumer Demands Driving Produce Packaging Trends Available online: https://crawfordpackaging.com/product-packaging/top-three-consumer-demands-driving-produce-packaging-trends (accessed on 6 December 2020) 

  7. 7. The Maryland?National Capital Park and Planning Commission Reduce, Recover, Recycle―Food Waste in Prince George’s County, MD The Maryland?National Capital Park and Planning Commission Adelphi, MD, USA 4 2019 Available online: http://mncppcapps.org/planning/publications/PDFs/371/FoodWaste2019.pdf (accessed on 6 December 2020) 

  8. 8. Food Safety Education Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education (accessed on 6 December 2020) 

  9. 9. Kuswandi B. Freshness Sensors for Food Packaging Reference Module in Food Science Elsevier Amsterdam, The Netherlands 2017 1 11 9780081005965 

  10. 10. Alam A.U. Clyne D. Jin H. Hu N.-X. Deen M.J. Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for in Situ Water Quality Monitoring ACS Sens. 2020 5 412 422 10.1021/acssensors.9b02095 32028771 

  11. 11. Alam A.U. Howlader M.M.R. Hu N.-X. Deen M.J. Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs Sens. Actuators B Chem. 2019 296 126632 10.1016/j.snb.2019.126632 

  12. 12. Qin Y. Alam A.U. Pan S. Howlader M.M.R. Ghosh R. Hu N.-X. Jin H. Dong S. Chen C.-H. Deen M.J. Integrated water quality monitoring system with pH, free chlorine, and temperature sensors Sens. Actuators B Chem. 2018 255 781 790 10.1016/j.snb.2017.07.188 

  13. 13. Alam A.U. Qin Y. Howlader M.M.R. Hu N.-X. Deen M.J. Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin Sens. Actuators B Chem. 2018 254 896 909 10.1016/j.snb.2017.07.127 

  14. 14. Beaudry R.M. Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality Postharvest Biol. Technol. 1999 15 293 303 10.1016/S0925-5214(98)00092-1 

  15. 15. Li Z.G. Liu Y. Dong J.G. Xu R.-J. Zhu M.-Z. Effect of low oxygen and high carbon dioxide on the levels of ethylene and 1-aminocyclopropane-1-carboxylic acid in ripening apple fruits J. Plant Growth Regul. 1983 2 81 87 10.1007/BF02042236 

  16. 16. Shirazi A. Cameron A.C. Controlling Relative Humidity in Modified Atmosphere Packages of Tomato Fruit HortScience 1992 27 336 339 10.21273/HORTSCI.27.4.336 

  17. 17. Mehyar G.F. Han J.H. Active Packaging for Fresh-Cut Fruits and Vegetables Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables John Wiley & Sons, Inc. Hoboken, NJ, USA 2011 267 283 

  18. 18. Alam A.U. Deen M.J. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes Anal. Chem. 2020 10.1021/acs.analchem.0c00402 32141295 

  19. 19. Li K. Physiology and Classification of Fruits Handbook of Fruits and Fruit Processing Wiley-Blackwell Oxford, UK 2012 1 12 

  20. 20. Vendrell M. Dominguez-Puigjaner E. Llop-Tous I. Climacteric Versus Non-Climacteric Physiology Acta Hortic. 2001 345 349 10.17660/ActaHortic.2001.553.84 

  21. 21. Singh V. Zaman P. Meher J. Postharvest Technology of Fruits and Vegetables Fruit and Vegetables Blackwell Publishing Ltd Oxford, UK 2007 Volume 2 115 369 

  22. 22. Prasad K. Jacob S. Siddiqui M.W. Fruit Maturity, Harvesting, and Quality Standards Preharvest Modulation of Postharvest Fruit and Vegetable Quality Elsevier Amsterdam, The Netherlands 2018 41 69 

  23. 23. Handling of Fresh Fruits, Vegetables and Root Crops―A Training Manual for Grenada Available online: http://www.fao.org/3/a-au186e.pdf (accessed on 6 December 2020) 

  24. 24. Watson J.A. Treadwell D. Sargent S.A. Brecht J.K. Pelletier W. Postharvest Storage, Packaging and Handling of Specialty Crops: A Guide for Florida Small Farm Producers, Document HS1270 2016 Available online: https://edis.ifas.ufl.edu/hs1270 (accessed on 6 December 2020) 

  25. 25. Kader A.A. The Role of Post-Harvest Management in Assuring the Quality and Safety of Horticultural Produce Available online: http://www.fao.org/3/y5431e/y5431e00.htm (accessed on 6 December 2020) 

  26. 26. ±2% Accurate Humidity Sensing Reference Design Supporting Robust 2 m Wire Communication Available online: https://www.ti.com/tool/TIDA-00972 (accessed on 6 December 2020) 

  27. 27. Mahajan P.V. Caleb O.J. Singh Z. Watkins C.B. Geyer M. Postharvest treatments of fresh produce Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014 372 10.1098/rsta.2013.0309 

  28. 28. Kuswandi B. Wicaksono Y. Jayus Abdullah A. Heng L.Y. Ahmad M. Smart packaging: Sensors for monitoring of food quality and safety Sens. Instrum. Food Qual. Saf. 2011 5 137 146 10.1007/s11694-011-9120-x 

  29. 29. El-Ramady H.R. Domokos-Szabolcsy E. Abdalla N.A. Taha H.S. Fari M. Postharvest Management of Fruits and Vegetables Storage Sustainable Agriculture Reviews Vol. 15 Springer Berlin/Heidelberg, Germany 2015 65 152 

  30. 30. Brodwin E. Fresh Fruits and Vegetables Are a Scam if You Don’t Consider One Thing Available online: https://www.businessinsider.in/fresh-fruits-and-vegetables-are-a-scam-if-you-dont-consider-one-thing/articleshow/58245793.cms (accessed on 6 December 2020) 

  31. 31. What Is “Freezer Burn?” Available online: https://www.loc.gov/everyday-mysteries/item/what-is-freezer-burn (accessed on 6 December 2020) 

  32. 32. Rickman J.C. Barrett D.M. Bruhn C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds J. Sci. Food Agric. 2007 87 930 944 10.1002/jsfa.2825 

  33. 33. Fresh Fruits & Vegetables Market Business Analysis by Latest Trends 2020. Global Industry Growth Factors, CAGR Status, Leading Key Players Update, Regional Economy, Development Plans and Forecast to 2025 Available online: https://www.marketwatch.com/press-release/fresh-fruits-vegetables-market-business-analysis-by-latest-trends-2020-global-industry-growth-factors-cagr-status-leading-key-players-update-regional-economy-development-plans-and-forecast-to-2025-2020-11-10 (accessed on 6 December 2020) 

  34. 34. Storage Temperatures and Procedures Available online: https://opentextbc.ca/foodsafety/chapter/storage-temperatures-and-procedures/ (accessed on 6 December 2020) 

  35. 35. Fuertes G. Soto I. Carrasco R. Vargas M. Sabattin J. Lagos C. Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety J. Sens. 2016 2016 10.1155/2016/4046061 

  36. 36. Welcome to the Future: Smart Packaging―PreScouter―Custom Intelligence from a Global Network of Experts Available online: https://www.prescouter.com/2017/03/smart-packaging/ (accessed on 6 December 2020) 

  37. 37. Beshai H. Sarabha G.K. Rathi P. Alam A.U. Jamal Deen M. Freshness monitoring of packaged vegetables Appl. Sci. 2020 10 7937 10.3390/app10217937 

  38. 38. Kim Y.H. Yang Y.J. Kim J.S. Choi D.S. Park S.H. Jin S.Y. Park J.S. Non-destructive monitoring of apple ripeness using an aldehyde sensitive colorimetric sensor Food Chem. 2018 267 149 156 10.1016/j.foodchem.2018.02.110 29934149 

  39. 39. Vo E. Murray D. Scott T. Atttar A. Development of a novel colorimetric indicator pad for detecting aldehydes Talanta 2007 73 87 94 10.1016/j.talanta.2007.03.014 19071854 

  40. 40. Mustafa F. Andreescu S. Chemical and biological sensors for food-quality monitoring and smart packaging Foods 2018 7 168 10.3390/foods7100168 

  41. 41. Boerman J.K. Bauersfeld M.L. Schmitt K. Wollenstein J. Detection of Gaseous Ethanol by the Use of Ambient Temperature Platinum Catalyst Procedia Eng. 2016 168 201 205 10.1016/j.proeng.2016.11.217 

  42. 42. Hu L.-Y. Hu S.-L. Wu J. Li Y.-H. Zheng J.-L. Wei Z.-J. Liu J. Wang H.-L. Liu Y.-S. Zhang H. Hydrogen Sulfide Prolongs Postharvest Shelf Life of Strawberry and Plays an Antioxidative Role in Fruits J. Agric. Food Chem. 2012 60 8684 8693 10.1021/jf300728h 22871304 

  43. 43. Guo W. Nelson S.O. Trabelsi S. Kays S.J. 10?1800-MHz dielectric properties of fresh apples during storage J. Food Eng. 2007 83 562 569 10.1016/j.jfoodeng.2007.04.009 

  44. 44. Park H.J. Yoon J.H. Lee K.G. Choi B.G. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays Nano Converg. 2019 6 10.1186/s40580-019-0179-0 

  45. 45. De Almeida Teixeira G.H. Santos L.O. Cunha Junior L.C. Durigan J.F. Effect of carbon dioxide (CO 2 ) and oxygen (O 2 ) levels on quality of ‘Palmer’ mangoes under controlled atmosphere storage J. Food Sci. Technol. 2018 55 145 156 10.1007/s13197-017-2873-4 29358805 

  46. 46. Feng L. Musto C.J. Suslick K.S. A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde J. Am. Chem. Soc. 2010 132 4046 4047 10.1021/ja910366p 20218682 

  47. 47. RipeSense Available online: https://product.statnano.com/product/6730/ripesense (accessed on 6 December 2020) 

  48. 48. Gomez A.H. Hu G. Wang J. Pereira A.G. Evaluation of tomato maturity by electronic nose Comput. Electron. Agric. 2006 54 44 52 10.1016/j.compag.2006.07.002 

  49. 49. Kuswandi B. Maryska C. Jayus Abdullah A. Heng L.Y. Real time on-package freshness indicator for guavas packaging J. Food Meas. Charact. 2013 7 29 39 10.1007/s11694-013-9136-5 

  50. 50. Kuswandi B. Kinanti D.P. Jayus Abdullah A. Heng L.Y. Simple and Low-cost freshness indicator for strawberries packaging Acta Manila Ser. A 2013 61 147 159 

  51. 51. Matindoust S. Baghaei-Nejad M. Shahrokh Abadi M.H. Zou Z. Zheng L.-R. Food quality and safety monitoring using gas sensor array in intelligent packaging Sens. Rev. 2016 36 169 183 10.1108/SR-07-2015-0115 

  52. 52. Opara U.L. Caleb O.J. Belay Z.A. Modified atmosphere packaging for food preservation Food Quality and Shelf Life Elsevier Amsterdam, The Netherlands 2019 235 259 

  53. 53. Fagundes C. Carciofi B.A.M. Monteiro A.R. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures Food Sci. Technol. 2013 33 60 67 10.1590/S0101-20612013005000023 

  54. 54. Beaudry R. MAP as a basis for active packaging Intelligent and Active Packaging for Fruits and Vegetables CRC Press Boca Raton, FL, USA 2007 31 55 

  55. 55. Ageless Eye, Oxygen Indicator Available online: http://www.mgc.co.jp/eng/products/abc/ageless/eye.html (accessed on 11 December 2020) 

  56. 56. Realini C.E. Marcos B. Active and intelligent packaging systems for a modern society Meat Sci. 2014 98 404 419 10.1016/j.meatsci.2014.06.031 25034453 

  57. 57. Shillingford C. Russell C.W. Burgess I.B. Aizenberg J. Bioinspired Artificial Melanosomes as Colorimetric Indicators of Oxygen Exposure ACS Appl. Mater. Interfaces 2016 8 4314 4317 10.1021/acsami.5b11933 26854914 

  58. 58. Ahvenainen R. Hurme E. Active and smart packaging for meeting consumer demands for quality and safety Food Addit. Contam. 1997 14 753 763 10.1080/02652039709374586 9373538 

  59. 59. Balderson S.N. Whitewood R.J. Gas Indicator for a Package U.S. Patent 5,439,648 8 8 1995 

  60. 60. Mills A. Oxygen indicators and intelligent inks for packaging food Chem. Soc. Rev. 2005 34 1003 1011 10.1039/b503997p 16284666 

  61. 61. Van Pelt A.E. Quinones B. Lofgren H.L. Bartz F.E. Newman K.L. Leon J.S. Low Prevalence of Human Pathogens on Fresh Produce on Farms and in Packing Facilities: A Systematic Review Front. Public Health 2018 6 1 10 10.3389/fpubh.2018.00040 29404319 

  62. 62. Mustafa F. Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications RSC Adv. 2020 10 19309 19336 10.1039/D0RA01084G 

  63. 63. Mattila T. Tawast J. Ahvenainen R. New possibilities for quality control of aseptic packages: Microbiological spoilage and seal defect detection using head-space indicators Leb. Technol. 1990 23 246 251 

  64. 64. Retama J.R. Mecerreyes D. Lopez-Ruiz B. Lopez-Cabarcos E. Synthesis and characterization of semiconducting polypyrrole/polyacrylamide microparticles with GOx for biosensor applications Colloids Surfaces A Physicochem. Eng. Asp. 2005 270?271 239 244 10.1016/j.colsurfa.2005.06.007 

  65. 65. Ahuja T. Mir I. Kumar D. Biomolecular immobilization on conducting polymers for biosensing applications Biomaterials 2007 28 791 805 10.1016/j.biomaterials.2006.09.046 17055573 

  66. 66. Arshak K. Adley C. Moore E. Cunniffe C. Campion M. Harris J. Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures Sens. Actuators B Chem. 2007 126 226 231 10.1016/j.snb.2006.12.006 

  67. 67. DeCicco B.T. Keeven J.K. Detection System for Microbial Contamination in Health-Care Products U.S. Patent 5,443,987 22 8 1995 

  68. 68. Kress-Rogers E. Brimelow C.J.B. Instrumentation and Sensors for the Food Industry 2nd ed. Woodhead Publishing Cambridge, UK 2001 9781855736481 

  69. 69. Terry L.A. White S.F. Tigwell L.J. The Application of Biosensors to Fresh Produce and the Wider Food Industry J. Agric. Food Chem. 2005 53 1309 1316 10.1021/jf040319t 15740000 

  70. 70. SIRA Technologies Food Sentinel System Available online: https://www.adazonusa.com/blog/barcode-industry/sira-technologies-food-sentinel-system (accessed on 13 December 2020) 

  71. 71. Active Packaging and Intelligent Packaging for Fruits and Vegetables Available online: https://www.ukessays.com/essays/environmental-studies/active-packaging-and-intelligent-packaging-for-fruits-and-vegetables.php?vref=1 (accessed on 31 January 2021) 

  72. 72. How Does an NDIR CO2 Sensor Work? Available online: https://www.co2meter.com/blogs/news/6010192-how-does-an-ndir-co2-sensor-work (accessed on 6 December 2020) 

  73. 73. Esser B. Schnorr J.M. Swager T.M. Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness Angew. Chem. Int. Ed. 2012 51 5752 5756 10.1002/anie.201201042 22517760 

  74. 74. Zevenbergen M.A.G. Wouters D. Dam V.A.T. Brongersma S.H. Crego-Calama M. Electrochemical sensing of ethylene employing a thin ionic-liquid layer Anal. Chem. 2011 83 6300 6307 10.1021/ac2009756 21721532 

  75. 75. Ma L. Wang L. Chen R. Chang K. Wang S. Hu X. Sun X. Lu Z. Sun H. Guo Q. A low cost compact measurement system constructed using a smart electrochemical sensor for the real-time discrimination of fruit ripening Sensors 2016 16 501 10.3390/s16040501 

  76. 76. Cristescu S.M. Mandon J. Arslanov D. De Pessemier J. Hermans C. Harren F.J.M. Current methods for detecting ethylene in plants Ann. Bot. 2013 111 347 360 10.1093/aob/mcs259 23243188 

  77. 77. Maschietti M. Time-Temperature Indicators for Perishable Products Recent Pat. Eng. 2010 4 129 144 10.2174/187221210791233425 

  78. 78. 3MTM MonitorMarkTM Time Temperature Indicators Available online: https://www.3m.com/3M/en_US/company-us/all-3m-products/~/MONMARK-3M-MonitorMark-Time-Temperature-Indicators/?N=5002385+3293785721&rt=rud (accessed on 6 December 2020) 

  79. 79. How RFID Works Available online: https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/rfid.htm (accessed on 6 December 2020) 

  80. 80. Active RFID Vs. Passive RFID: Which Differences? Available online: https://elainnovation.com/active-rfid-vs-passive-rfid-which-differences.html (accessed on 6 December 2020) 

  81. 81. Badia-Melis R. Ruiz-Garcia L. Garcia-Hierro J. Robla Villalba J.I. Refrigerated fruit storage monitoring combining two different wireless sensing technologies: RFID and WSN Sensors 2015 15 4781 10.3390/s150304781 25730482 

  82. 82. Smart Packaging―A New Use for RFID Tags Available online: https://butlertechnologies.com/smart-packaging-new-use-rfid-tags/ (accessed on 6 December 2020) 

  83. 83. Vanderroost M. Ragaert P. Devlieghere F. De Meulenaer B. Intelligent food packaging: The next generation Trends Food Sci. Technol. 2014 39 47 62 10.1016/j.tifs.2014.06.009 

  84. 84. Tang X. Tan C. Chen A. Li Z. Shuai R. Design and implementation of temperature and humidity monitoring system for small cold storage of fruit and vegetable based on Arduino J. Phys. Conf. Ser. 2020 1601 10.1088/1742-6596/1601/6/062010 

  85. 85. Jedermann R. Praeger U. Geyer M. Lang W. Remote quality monitoring in the banana chain Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014 372 10.1098/rsta.2013.0303 

  86. 86. FreshView Available online: https://www.freshview.com.au/page/sensor_ec_co2 (accessed on 6 December 2020) 

  87. 87. Dinh T.V. Choi I.Y. Son Y.S. Kim J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction Sens. Actuators B Chem. 2016 231 529 538 10.1016/j.snb.2016.03.040 

  88. 88. Bleecker A.B. Kende H. Ethylene: A Gaseous Signal Molecule in Plants Annu. Rev. Cell Dev. Biol. 2000 16 1 18 10.1146/annurev.cellbio.16.1.1 11031228 

  89. 89. Valente J. Almeida R. Kooistra L. A Comprehensive Study of the Potential Application of Flying Ethylene-Sensitive Sensors for Ripeness Detection in Apple Orchards Sensors 2019 19 372 10.3390/s19020372 

  90. 90. Respiration and Ethylene and their Relationship to Postharvest Handling Available online: https://eorganic.org/node/2671 (accessed on 6 December 2020) 

  91. 91. Young R.E. Effect of Ionizing Radiation on Respiration and Ethylene Production of Avocado Fruit Nature 1965 205 1113 1114 10.1038/2051113a0 5833212 

  92. 92. Iqbal N. Khan N.A. Ferrante A. Trivellini A. Francini A. Khan M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones Front. Plant. Sci. 2017 8 1 19 10.3389/fpls.2017.00475 28220127 

  93. 93. Theologis A. One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening Cell 1992 70 181 184 10.1016/0092-8674(92)90093-R 1638627 

  94. 94. Vermeiren L. Devlieghere F. van Beest M. de Kruijf N. Debevere J. Developments in the active packaging of foods Trends Food Sci. Technol. 1999 10 77 86 10.1016/S0924-2244(99)00032-1 

  95. 95. Weber W. Luzi S. Karlsson M. Fussenegger M. A novel hybrid dual-channel catalytic-biological sensor system for assessment of fruit quality J. Biotechnol. 2009 139 314 317 10.1016/j.jbiotec.2009.01.002 19297727 

  96. 96. Schaefer D. Cheung W.M. Smart Packaging: Opportunities and Challenges Procedia CIRP 2018 72 1022 1027 10.1016/j.procir.2018.03.240 

  97. 97. Yildirim S. Rocker B. Pettersen M.K. Nilsen-Nygaard J. Ayhan Z. Rutkaite R. Radusin T. Suminska P. Marcos B. Coma V. Active Packaging Applications for Food Compr. Rev. Food Sci. Food Saf. 2018 17 165 199 10.1111/1541-4337.12322 33350066 

  98. 98. Biji K.B. Ravishankar C.N. Mohan C.O. Srinivasa Gopal T.K. Smart packaging systems for food applications: A review J. Food Sci. Technol. 2015 52 6125 6135 10.1007/s13197-015-1766-7 26396360 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로