$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Natural Polyphenols, 1,2,3,4,6-O-Pentagalloyglucose and Proanthocyanidins, as Broad-Spectrum Anticoronaviral Inhibitors Targeting Mpro and RdRp of SARS-CoV-2 원문보기

Biomedicines, v.10 no.5, 2022년, pp.1170 -   

Jin, Young-Hee (KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea) ,  Lee, Jihye (Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea) ,  Jeon, Sangeun (jihye.lee_01@ip-korea.org (J.L.)) ,  Kim, Seungtaek (sangeun.jeon@ip-korea.org (S.J.)) ,  Min, Jung Sun (seungtaek.kim@ip-korea.org (S.K.)) ,  Kwon, Sunoh (Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea)

Abstract AI-Helper 아이콘AI-Helper

The natural plant dietary polyphenols 1,2,3,4,6-O-Pentagalloylglucose (PGG) and proanthocyanidin (PAC) have potent antioxidant activity and a variety of pharmacological activities, including antiviral activity. In this study, we examined the inhibitory effect of PGG and PAC on SARS-CoV-2 virus infec...

주제어

참고문헌 (38)

  1. 1. V’Kovski P. Kratzel A. Steiner S. Stalder H. Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2 Nat. Rev. Microbiol. 2021 19 155 170 10.1038/s41579-020-00468-6 33116300 

  2. 2. World Health Organization WHO Coronavirus (COVID-19) Dashboard Available online: https://covid19.who.int/ (accessed on 11 April 2022) 

  3. 3. Krause P.R. Fleming T.R. Longini I.M. Peto R. Briand S. Heymann D.L. Beral V. Snape M.D. Rees H. Ropero A.M. SARS-CoV-2 Variants and Vaccines N. Engl. J. Med. 2021 385 179 186 10.1056/NEJMsr2105280 34161052 

  4. 4. Hu B. Guo H. Zhou P. Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19 Nat. Rev. Microbiol. 2021 19 141 154 10.1038/s41579-020-00459-7 33024307 

  5. 5. Hattori S.I. Higashi-Kuwata N. Hayashi H. Allu S.R. Raghavaiah J. Bulut H. Das D. Anson B.J. Lendy E.K. Takamatsu Y. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication Nat. Commun. 2021 12 668 10.1038/s41467-021-20900-6 33510133 

  6. 6. Picarazzi F. Vicenti I. Saladini F. Zazzi M. Mori M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge Molecules 2020 25 5695 10.3390/molecules25235695 

  7. 7. Vuong W. Khan M.B. Fischer C. Arutyunova E. Lamer T. Shields J. Saffran H.A. McKay R.T. van Belkum M.J. Joyce M.A. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication Nat. Commun. 2020 11 4282 10.1038/s41467-020-18096-2 32855413 

  8. 8. Sheahan T.P. Sims A.C. Zhou S. Graham R.L. Pruijssers A.J. Agostini M.L. Leist S.R. Schafer A. Dinnon K.H. 3rd Stevens L.J. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice Sci. Transl. Med. 2020 12 eabb5883 10.1126/scitranslmed.abb5883 32253226 

  9. 9. Owen D.R. Allerton C.M.N. Anderson A.S. Aschenbrenner L. Avery M. Berritt S. Boras B. Cardin R.D. Carlo A. Coffman K.J. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19 Science 2021 374 1586 1593 10.1126/science.abl4784 34726479 

  10. 10. Yin W. Mao C. Luan X. Shen D.D. Shen Q. Su H. Wang X. Zhou F. Zhao W. Gao M. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir Science 2020 368 1499 1504 10.1126/science.abc1560 32358203 

  11. 11. Bors W. Michel C. Stettmaier K. Electron paramagnetic resonance studies of radical species of proanthocyanidins and gallate esters Arch. Biochem. Biophys. 2000 374 347 355 10.1006/abbi.1999.1606 10666317 

  12. 12. Bors W. Michel C. Chemistry of the antioxidant effect of polyphenols Ann. N. Y. Acad. Sci. 2002 957 57 69 10.1111/j.1749-6632.2002.tb02905.x 12074961 

  13. 13. Abdelwahed A. Bouhlel I. Skandrani I. Valenti K. Kadri M. Guiraud P. Steiman R. Mariotte A.M. Ghedira K. Laporte F. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling Chem. Biol. Interact. 2007 165 1 13 10.1016/j.cbi.2006.10.003 17129579 

  14. 14. Kang D.G. Moon M.K. Choi D.H. Lee J.K. Kwon T.O. Lee H.S. Vasodilatory and anti-inflammatory effects of the 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) via a nitric oxide-cGMP pathway Eur. J. Pharmacol. 2005 524 111 119 10.1016/j.ejphar.2005.08.061 16253226 

  15. 15. Lee S.J. Lee I.S. Mar W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose in murine macrophage cells Arch. Pharm. Res. 2003 26 832 839 10.1007/BF02980029 14609132 

  16. 16. Li Y. Kim J. Li J. Liu F. Liu X. Himmeldirk K. Ren Y. Wagner T.E. Chen X. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway Biochem. Biophys. Res. Commun. 2005 336 430 437 10.1016/j.bbrc.2005.08.103 16137651 

  17. 17. Park E.J. Zhao Y.Z. An R.B. Kim Y.C. Sohn D.H. 1,2,3,4,6-penta-O-galloyl-beta-D-glucose from Galla Rhois protects primary rat hepatocytes from necrosis and apoptosis Planta Med. 2008 74 1380 1383 10.1055/s-2008-1081300 18622905 

  18. 18. Fujiwara H. Tabuchi M. Yamaguchi T. Iwasaki K. Furukawa K. Sekiguchi K. Ikarashi Y. Kudo Y. Higuchi M. Saido T.C. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo J. Neurochem. 2009 109 1648 1657 10.1111/j.1471-4159.2009.06069.x 19457098 

  19. 19. Ahn M.J. Kim C.Y. Lee J.S. Kim T.G. Kim S.H. Lee C.K. Lee B.B. Shin C.G. Huh H. Kim J. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis Planta Med. 2002 68 457 459 10.1055/s-2002-32070 12058327 

  20. 20. Liu G. Xiong S. Xiang Y.F. Guo C.W. Ge F. Yang C.R. Zhang Y.J. Wang Y.F. Kitazato K. Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus Arch. Virol. 2011 156 1359 1369 10.1007/s00705-011-0989-9 21479599 

  21. 21. Lee S.J. Lee H.K. Jung M.K. Mar W. In vitro antiviral activity of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose against hepatitis B virus Biol. Pharm. Bull. 2006 29 2131 2134 10.1248/bpb.29.2131 17015965 

  22. 22. Behrendt P. Perin P. Menzel N. Banda D. Pfaender S. Alves M.P. Thiel V. Meuleman P. Colpitts C.C. Schang L.M. Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry Antivir. Res. 2017 147 19 28 10.1016/j.antiviral.2017.09.006 28923507 

  23. 23. Tu Z. Xu M. Zhang J. Feng Y. Hao Z. Tu C. Liu Y. Pentagalloylglucose Inhibits the Replication of Rabies Virus via Mediation of the miR-455/SOCS3/STAT3/IL-6 Pathway J. Virol. 2019 93 e00539-19 10.1128/JVI.00539-19 31243136 

  24. 24. Zhang Z. Zheng L. Zhao Z. Shi J. Wang X. Huang J. Grape seed proanthocyanidins inhibit H 2 O 2 -induced osteoblastic MC3T3-E1 cell apoptosis via ameliorating H 2 O 2 -induced mitochondrial dysfunction J. Toxicol. Sci. 2014 39 803 813 10.2131/jts.39.803 25242411 

  25. 25. Dai N. Zou Y. Zhu L. Wang H.F. Dai M.G. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl4)-induced steatosis and liver injury in rats via CYP2E1 regulation J. Med. Food 2014 17 663 669 10.1089/jmf.2013.2834 24712752 

  26. 26. Blade C. Arola L. Salvado M.J. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms Mol. Nutr. Food Res. 2010 54 37 59 10.1002/mnfr.200900476 19960459 

  27. 27. Karthikeyan K. Bai B.R. Devaraj S.N. Cardioprotective effect of grape seed proanthocyanidins on isoproterenol-induced myocardial injury in rats Int. J. Cardiol. 2007 115 326 333 10.1016/j.ijcard.2006.03.016 16828181 

  28. 28. Shahat A.A. Cos P. De Bruyne T. Apers S. Hammouda F.M. Ismail S.I. Azzam S. Claeys M. Goovaerts E. Pieters L. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica Planta Med. 2002 68 539 541 10.1055/s-2002-32547 12094299 

  29. 29. Takeshita M. Ishida Y. Akamatsu E. Ohmori Y. Sudoh M. Uto H. Tsubouchi H. Kataoka H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA J. Biol. Chem. 2009 284 21165 21176 10.1074/jbc.M109.004945 19531480 

  30. 30. Jin Y.H. Min J.S. Jeon S. Lee J. Kim S. Park T. Park D. Jang M.S. Park C.M. Song J.H. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections Phytomedicine 2021 86 153440 10.1016/j.phymed.2020.153440 33376043 

  31. 31. Jin Y.H. Jeon S. Lee J. Kim S. Jang M.S. Park C.M. Song J.H. Kim H.R. Kwon S. Anticoronaviral Activity of the Natural Phloroglucinols, Dryocrassin ABBA and Filixic Acid ABA from the Rhizome of Dryopteris crassirhizoma by Targeting the Main Protease of SARS-CoV-2 Pharmaceutics 2022 14 376 10.3390/pharmaceutics14020376 35214108 

  32. 32. Min J.S. Kwon S. Jin Y.H. SARS-CoV-2 RdRp Inhibitors Selected from a Cell-Based SARS-CoV-2 RdRp Activity Assay System Biomedicines 2021 9 996 10.3390/biomedicines9080996 34440200 

  33. 33. Haid S. Grethe C. Bankwitz D. Grunwald T. Pietschmann T. Identification of a Human Respiratory Syncytial Virus Cell Entry Inhibitor by Using a Novel Lentiviral Pseudotype System J. Virol. 2015 90 3065 3073 10.1128/JVI.03074-15 26719246 

  34. 34. Chen R.H. Yang L.J. Hamdoun S. Chung S.K. Lam C.W. Zhang K.X. Guo X. Xia C. Law B.Y.K. Wong V.K.W. 1,2,3,4,6-Pentagalloyl Glucose, a RBD-ACE2 Binding Inhibitor to Prevent SARS-CoV-2 Infection Front. Pharmacol. 2021 12 634176 10.3389/fphar.2021.634176 33897423 

  35. 35. Zhang T. Lo C.Y. Xiao M. Cheng L. Pun Mok C.K. Shaw P.C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities J. Ethnopharmacol. 2020 253 112671 10.1016/j.jep.2020.112671 32081739 

  36. 36. Li H. Xu F. Liu C. Cai A. Dain J.A. Li D. Seeram N.P. Cho B.P. Ma H. Inhibitory Effects and Surface Plasmon Resonance-Based Binding Affinities of Dietary Hydrolyzable Tannins and Their Gut Microbial Metabolites on SARS-CoV-2 Main Protease J. Agric. Food Chem. 2021 69 12197 12208 10.1021/acs.jafc.1c03521 34586788 

  37. 37. Wang Y. Fang S. Wu Y. Cheng X. Zhang L.K. Shen X.R. Li S.Q. Xu J.R. Shang W.J. Gao Z.B. Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates Acta Pharmacol. Sin. 2022 43 781 787 10.1038/s41401-021-00732-2 34294887 

  38. 38. Zhu Y. Xie D.Y. Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins against the Main Protease Activity of SARS-CoV-2 Front. Plant Sci. 2020 11 601316 10.3389/fpls.2020.601316 33329667 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로