$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Perspectives of energy materials grown by APCVD

Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, v.140, 2015년, pp.1 - 8  

Drosos, Charalampos (Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom) ,  Vernardou, Dimitra (Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 71004 Heraklion, Crete, Greece)

Abstract AI-Helper 아이콘AI-Helper

Abstract Chemical vapor deposition routes are attractive for the production of coatings, since they generally result in tough, durable layers in which their stoichiometry may cost-effectively be controlled. In addition, the simplicity of this technique, when performed at atmospheric pressure, would...

Keyword

참고문헌 (80)

  1. J. Mater. Chem. A Warwick 2 3275 2014 10.1039/C3TA14124A Advances in thermochromic vanadium dioxide films 

  2. J. Solid State Chem. Goodenough 3 490 1971 10.1016/0022-4596(71)90091-0 The two components of the crystallographic transition in VO2 

  3. Phys. Rev. B Zylbersztejn 11 4383 1975 10.1103/PhysRevB.11.4383 Metal-insulator transition in vanadium dioxide 

  4. Mater. Res. Bull. Cavanna 2 167 1999 10.1016/S0025-5408(99)00017-3 Optical switching of Au-doped VO2 sol-gel films 

  5. J. Mater. Chem. Manning 15 4560 2005 10.1039/b510552h APCVD of thermochromic vanadium dioxide thin films-solid solutions V2?xMxO2 (M=Mo, Nb) or composites VO2:SnO2 

  6. Appl. Phys. Lett. Muraoka 28 583 2002 10.1063/1.1446215 Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates 

  7. J. Appl. Phys. Dmitry 102 1 2007 Structure-functional property relationships in rf-sputtered vanadium dioxide thin films 

  8. Appl. Phys. Lett. Brassard 87 1 2005 10.1063/1.2001139 Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films 

  9. Philos. Mag. Deb 27 801 1973 10.1080/14786437308227562 Optical and photoelectric properties and colour centres in thin films of tungsten oxide 

  10. Appl. Phys. Lett. Lee 74 242 1999 10.1063/1.123268 Electrochromic mechanism in a-WO3?y thin films 

  11. J. Mater. Chem. Niklasson 17 127 2007 10.1039/B612174H Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these 

  12. J. Mater. Chem. Gillaspie 20 9585 2010 10.1039/c0jm00604a Metal-oxide films for electrochromic applications: present technology and future directions 

  13. J. Power Sources Goriparti 257 421 2014 10.1016/j.jpowsour.2013.11.103 Review on recent progress of nanostructured anode materials for Li-ion batteries 

  14. Energy Environ. Sci. Song 6 2280 2013 10.1039/c3ee40709h Towards sustainable and versatile energy storage devices: an overview of organic electrode materials 

  15. Chem. Commun. Goriparti 49 7234 2013 10.1039/c3cc43194k Ellagic acid-a novel organic electrode material for high capacity lithium ion batteries 

  16. Energy Environ. Sci. Gong 4 3223 2011 10.1039/c0ee00713g Recent advances in the research of polyanion-type cathode materials for Li-ion batteries 

  17. J. Power Sources Li 227 204 2013 10.1016/j.jpowsour.2012.11.025 Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes 

  18. Chem. Rev. Stanley Whittingham 104 4271 2004 10.1021/cr020731c Lithium batteries and cathode materials 

  19. J. Mater. Chem. Marom 21 9938 2011 10.1039/c0jm04225k A review of advanced and practical lithium battery materials 

  20. J. Phys. Chem. Lett. Girishkumar 1 2193 2010 10.1021/jz1005384 Lithium-air battery: promise and challenges 

  21. J. Power Sources Scrosati 195 2419 2010 10.1016/j.jpowsour.2009.11.048 Lithium batteries: status, prospects and future 

  22. J. Phys. Chem. Lett. Persson 1 1176 2010 10.1021/jz100188d Lithium diffusion in graphitic carbon 

  23. Adv. Mater. Kaskhedikar 21 2664 2009 10.1002/adma.200901079 Lithium storage in carbon nanostructures 

  24. Energy Environ. Sci. Landi 2 638 2009 10.1039/b904116h Carbon nanotubes for lithium ion batteries 

  25. Adv. Funct. Mater. Kim 16 2393 2006 10.1002/adfm.200500911 Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries 

  26. Phys. Chem. Chem. Phys. Hou 13 15384 2011 10.1039/c1cp21915d Graphene-based electrochemical energy conversion and storage fuel cells, supercapacitors and lithium ion batteries 

  27. Adv. Mater. Zhou 15 2107 2003 10.1002/adma.200306125 Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance 

  28. Energy Environ. Sci. Ji 4 2682 2011 10.1039/c0ee00699h Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries 

  29. Angew. Chem. Int. Ed. Bruce 47 2930 2008 10.1002/anie.200702505 Nanomaterials for rechargeable lithium batteries 

  30. Nanoscale Wang 2 1294 2010 10.1039/c0nr00068j Nano active materials for lithium-ion batteries 

  31. Pure Appl. Chem. Zhao 80 2283 2008 10.1351/pac200880112283 , Nanostructured anode materials for Li-ion batteries 

  32. Carbon Qiao 54 29 2013 10.1016/j.carbon.2012.10.066 Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries 

  33. Nat. Mater. Salvatore Aric 4 366 2005 10.1038/nmat1368 Nanostructured materials for advanced energy conversion and storage devices 

  34. J. Electrochem. Soc. Wang 148 D75 2001 10.1149/1.1368104 Morphological effects on the electrical and electrochemical properties of carbon aerogels 

  35. Appl. Phys. Lett. Niu 70 1480 1997 10.1063/1.118568 High power electrochemical capacitors based on carbon nanotube electrodes 

  36. J. Electrochem. Soc. Nelson 150 A1313 2003 10.1149/1.1603247 A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes 

  37. Jones 1 2009 Chemical Vapour Deposition: Precursors, Processes and Applications 

  38. Prog. Mater. Sci. Choy 48 57 2003 10.1016/S0079-6425(01)00009-3 Chemical vapour deposition of coatings 

  39. Chem. Vap. Depos. Choy 12 583 2006 10.1002/cvde.200690021 Processing and applications of aerosol-assisted chemical vapour deposition 

  40. Adv. Mater. Lewkebandara 6 237 1994 10.1002/adma.19940060313 CVD routes to titanium disulfide films 

  41. Dalton Trans. Parkin 42 9406 2013 10.1039/c3dt50607j Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication 

  42. Thin Solid Films Greenberg 110 73 1983 10.1016/0040-6090(83)90175-X Un doped and doped VO2 films grown from VO(OC3H7)3 

  43. J. Mater. Chem. Manning 12 2936 2002 10.1039/b205427m Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides 

  44. Chem. Vap. Depos. Vernardou 12 263 2006 10.1002/cvde.200506419 The growth of thermochromic VO2 films on glass by atmospheric-pressure CVD: a comparative study of precursors, CVD methodology, and substrates 

  45. Polyhedron Manning 23 3087 2004 10.1016/j.poly.2004.09.020 Vanadium (IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water 

  46. J. Mater. Sci. Maruyama 28 5073 1993 10.1007/BF00361182 Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate 

  47. J. Appl. Phys. Sahana 92 6495 2002 10.1063/1.1518148 Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition 

  48. J. Electrochem. Soc. Barreca 146 551 1999 10.1149/1.1391642 Vanadyl precursors used to modify the properties of vanadium oxide thin films obtained by chemical vapor deposition 

  49. J. Mater. Sci. Takahshi 24 192 1989 10.1007/BF00660953 Preparation of VO2 films by organometallic chemical vapour deposition and dip-coating 

  50. Chem. Vap. Depos. Mathur 13 42 2007 10.1002/cvde.200606578 Phase-selective CVD of vanadium oxide nanostructures 

  51. Surf. Coat. Technol. Kritikos 201 9334 2007 10.1016/j.surfcoat.2007.05.016 Structure and electrical properties of selectively chemically vapor deposited vanadium oxide films from vanadium tri-i-propoxyoxide vapors 

  52. Sol. Energy Mater. Sol. Cells Vernardou 128 36 2014 10.1016/j.solmat.2014.04.033 Thermochromic amorphous VO2 coatings grown by APCVD using a single-precursor 

  53. J. Mater. Chem. Qureshi 14 1190 2004 10.1039/b316531k Atmospheric pressure chemical vapour deposition of VO2 and VO2/TiO2 films from the reaction of VOCl3, TiCl4 and water 

  54. J. Photochem. Photobiol. A Evans 189 387 2007 10.1016/j.jphotochem.2007.02.031 Multi-functional self-cleaning thermochromic films by atmospheric pressure chemical vapour deposition, 

  55. Chem. Mater. Manning 16 744 2004 10.1021/cm034905y Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide 

  56. Thin Solid Films Blackman 517 4565 2009 10.1016/j.tsf.2008.12.050 Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing 

  57. J. Mater. Chem. Binions 17 4652 2007 10.1039/b708856f Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties 

  58. Sol. Energy Mater. Sol. Cells Saeli 94 141 2010 10.1016/j.solmat.2009.08.010 Nano-composite thermochromic thin films and their application in energy-efficient glazing 

  59. Polyhedron Saeli 28 2233 2009 10.1016/j.poly.2009.03.025 Templated growth of smart nanocomposite thin films: hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide 

  60. Appl. Surf. Sci. Saeli 255 7291 2009 10.1016/j.apsusc.2009.03.083 Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide 

  61. Sol. Energy Mater. Sol. Cells Granqvist 60 201 2000 10.1016/S0927-0248(99)00088-4 Electrochromic tungsten oxide films: review of progress 1993-1998 

  62. Electrochim. Acta Granqvist 44 3005 1999 10.1016/S0013-4686(99)00016-X Progress in electrochromics: tungsten oxide revisited 

  63. Thin Solid Films Hale 313-314 205 1998 10.1016/S0040-6090(97)00818-3 Visible and infrared optical constants of electrochromic materials for emissivity modulation applications 

  64. Thin Solid Films Ashrit 320 324 1998 10.1016/S0040-6090(97)00796-7 Electrochromic properties of nanocrystalline tungsten oxide thin films 

  65. Phys. Rev. B Hjelm 54 2436 1996 10.1103/PhysRevB.54.2436 Electronic structure and optical properties of WO3, LiWO3, NaWO3 and HWO3 

  66. Chem. Mater. Blackman 17 1583 2005 10.1021/cm0403816 Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3?x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties 

  67. J. Cryst. Growth Gesheva 312 1188 2010 10.1016/j.jcrysgro.2010.01.001 Atmospheric pressure chemical vapour deposition of electrochromic Mo-W thin oxide films: structural, optoelectronic and vibration properties 

  68. Sol. Energy Mater. Sol. Cells Rougier 71 343 2002 10.1016/S0927-0248(01)00092-7 Electrochromic W-M-O (M=V, Nb) sol-gel thin films: a way to neutral colour 

  69. Mater. Sci. Eng. B Ivanova 119 232 2005 10.1016/j.mseb.2004.12.084 Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices 

  70. Surf. Coat. Technol. Gesheva 201 9378 2007 10.1016/j.surfcoat.2007.04.088 Structural and surface analysis of Mo-W oxide films prepared by atmospheric pressure chemical vapor deposition 

  71. J. Phys. Conf. Ser. Bodurov 398 012016 2012 10.1088/1742-6596/398/1/012016 Study of electrochrimic APCVD WO3-V2O5 films 

  72. Faraday Discuss. Hyett 136 329 2007 10.1039/b615877c The effect of oxygen-containing reagents on the crystal morphology and orientation in tungsten oxide thin films deposited via atmospheric pressure chemical vapour deposition (APCVD) on glass substrates 

  73. Polyhedron Ashraf 26 1493 2007 10.1016/j.poly.2006.11.017 The APCVD of tungsten oxide thin films from reaction of WCl6 with ethanol and results on their gas-sensing properties 

  74. Meas. Sci. Technol. Ashraf 19 025203 2008 10.1088/0957-0233/19/2/025203 The gas-sensing properties of WO3?x thin films deposited via the atmospheric chemical vapour deposition (APCVD) of WCl6 with ethanol 

  75. Sol. Energy Mater. Sol. Cells Vernardou 95 2842 2011 10.1016/j.solmat.2011.05.046 A study of the electrochemical performance of vanadium oxide thin films grown by atmospheric pressure chemical vapour deposition 

  76. Nano Energy Wang 3 113 2014 10.1016/j.nanoen.2013.10.005 Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes 

  77. Carbon Chen 64 158 2013 10.1016/j.carbon.2013.07.048 Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries 

  78. Nano Energy Wang 2 294 2013 10.1016/j.nanoen.2012.10.001 Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors 

  79. J. Phys.. Chem. Lett. Yu 1 467 2009 10.1021/jz9003137 Self-assembled graphene/carbon nanotube hybrid films for supercapacitors 

  80. J. Power Sources Dorfler 227 218 2013 10.1016/j.jpowsour.2012.11.068 High power supercap electrodes based on vertical aligned carbon nanotubes on aluminium 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로