$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Proteomic View on the Role of Legume Symbiotic Interactions 원문보기

Frontiers in plant science, v.8, 2017년, pp.1267 -   

Larrainzar, Estíbaliz (Department of Environmental Sciences, Universidad Pú) ,  Wienkoop, Stefanie (blica de Navarra Pamplona, Spain)

Abstract AI-Helper 아이콘AI-Helper

Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular...

주제어

참고문헌 (119)

  1. Abdallah C. Valot B. Guillier C. Mounier A. Balliau T. Zivy M. . ( 2014 ). The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis . J. Proteomics 108 , 354 – 368 . 10.1016/j.jprot.2014.05.028 24925269 

  2. Alexander T. Toth R. Meier R. Weber H. C. ( 1989 ). Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular–arbuscular mycorrhizae in grasses . Canad. J. Bot. 67 , 2505 – 2513 . 10.1139/b89-320 

  3. Aloui A. Recorbet G. Gollotte A. Robert F. Valot B. Gianinazzi-Pearson V. . ( 2009 ). On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study . Proteomics 9 , 420 – 433 . 10.1002/pmic.200800336 19072729 

  4. Aloui A. Recorbet G. Robert F. Schoefs B. Bertrand M. Henry C. . ( 2011 ). Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula . BMC Plant Biol. 11 : 75 . 10.1186/1471-2229-11-75 21545723 

  5. Amiour N. Recorbet G. Robert F. Gianinazzi S. Dumas-Gaudot E. ( 2006 ). Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza . Mol. Plant Microbe Interact. 19 , 988 – 997 . 10.1094/MPMI-19-0988 16941903 

  6. Antolín-Llovera M. Petutsching E. K. Ried M. K. Lipka V. Nürnberger T. Robatzek S. . ( 2014 ). Knowing your friends and foes–plant receptor-like kinases as initiators of symbiosis or defence . New. Phytol. 204 , 791 – 802 . 10.1111/nph.13117 25367611 

  7. Arrivault S. Guenther M. Florian A. Encke B. Feil R. Vosloh D. . ( 2014 ). Dissecting the subcellular compartmentation of proteins and metabolites in arabidopsis leaves using non-aqueous fractionation . Mol. Cell Proteomics 13 , 2246 – 2259 . 10.1074/mcp.M114.038190 24866124 

  8. Becker A. Barnett M. J. Capela D. Dondrup M. Kamp P.-B. Krol E. . ( 2009 ). A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data . J. Biotechnol. 140 , 45 – 50 . 10.1016/j.jbiotec.2008.11.006 19103235 

  9. Bestel-Corre G. Dumas-Gaudot E. Gianinazzi S. ( 2004 ). Proteomics as a tool to monitor plant-microbe endosymbioses in the rhizosphere . Mycorrhiza 14 , 1 – 10 . 10.1007/s00572-003-0280-3 14625704 

  10. Bestel-Corre G. Dumas-Gaudot E. Poinsot V. Dieu M. Dierick J. F. van T. D. . ( 2002 ). Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry . Electrophoresis. 23 , 122 – 137 . 10.1002/1522-2683(200201)23:1 3.0.CO;2-4 11824612 

  11. Blanquet P. Silva L. Catrice O. Bruand C. Carvalho H. Meilhoc E. ( 2015 ). Sinorhizobium meliloti controls nitric oxide-mediated post-translational modification of a Medicago truncatula nodule protein . Mol. Plant Microbe Interact. 28 , 1353 – 1363 . 10.1094/MPMI-05-15-0118-R 26422404 

  12. Brechenmacher L. Lee J. Sachdev S. Song Z. Nguyen T. H. Joshi T. . ( 2009 ). Establishment of a protein reference map for soybean root hair cells . Plant Physiol. 149 , 670 – 682 . 10.1104/pp.108.131649 19036831 

  13. Catalano C. M. Lane W. S. Sherrier D. J. ( 2004 ). Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules . Electrophoresis 25 , 519 – 531 . 10.1002/elps.200305711 14760646 

  14. Clarke V. C. Loughlin P. C. Gavrin A. Chen C. Brear E. M. Day D. A. . ( 2015 ). Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins . Mol. Cell. Proteomics 14 , 1301 – 1322 . 10.1074/mcp.M114.043166 25724908 

  15. Daher Z. Recorbet G. Solymosi K. Wienkoop S. Mounier A. Morandi D. . ( 2016 ). Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature . Physiol. Plant. 159 , 13 – 29 . 10.1111/ppl.12505 27558913 

  16. Dam S. Dyrlund T. F. Ussatjuk A. Jochimsen B. Nielsen K. Goffard N. . ( 2014 ). Proteome reference maps of the Lotus japonicus nodule and root . Proteomics 14 , 230 – 240 . 10.1002/pmic.201300353 24293220 

  17. Delmotte N. Ahrens C. H. Knief C. Qeli E. Koch M. Fischer H. M. . ( 2010 ). An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules . Proteomics 10 , 1391 – 1400 . 10.1002/pmic.200900710 20104621 

  18. Delmotte N. Mondy S. Alunni B. Fardoux J. Chaintreuil C. Vorholt J. A. . ( 2014 ). A proteomic approach of Bradyrhizobium/Aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis . Int. J. Mol. Sci. 15 , 3660 – 3670 . 10.3390/ijms15033660 24590127 

  19. Desalegn G. Turetschek R. Kaul H.-P. Wienkoop S. ( 2016 ). Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection . J. Proteomics 143 , 173 – 187 . 10.1016/j.jprot.2016.03.018 27016040 

  20. Dimkpa C. Weinand T. Asch F. ( 2009 ). Plant-rhizobacteria interactions alleviate abiotic stress conditions . Plant Cell Environ. 32 , 1682 – 1694 . 10.1111/j.1365-3040.2009.02028.x 19671096 

  21. Djordjevic M. A. ( 2004 ). Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective . Proteomics 4 , 1859 – 1872 . 10.1002/pmic.200300802 15221743 

  22. Djordjevic M. A. Chen H. C. Natera S. Van Noorden G. Menzel C. Taylor S. . ( 2003 ). A global analysis of protein expression profiles in Sinorhizobium meliloti : discovery of new genes for nodule occupancy and stress adaptation . Mol. Plant Microbe Interact. 16 , 508 – 524 . 10.1094/MPMI.2003.16.6.508 12795377 

  23. Domonkos A. Horvath B. Marsh J. F. Halasz G. Ayaydin F. Oldroyd G. E. D. . ( 2013 ). The identification of novel loci required for appropriate nodule development in Medicago truncatula . BMC Plant Biol. 13 : 157 . 10.1186/1471-2229-13-157 24119289 

  24. Ferrol N. Pozo M. J. Antelo M. Azcón-Aguilar C. ( 2002 ). Arbuscular mycorrhizal symbiosis regulates plasma membrane H + -ATPase gene expression in tomato plants . J. Exp. Bot. 53 , 1683 – 1687 . 10.1093/jxb/erf014 12096108 

  25. Friso G. van Wijk K. J. ( 2015 ). Posttranslational protein modifications in plant metabolism . Plant Physiol. 169 , 1469 – 1487 . 10.1104/pp.15.01378 26338952 

  26. Fujisawa T. Okamoto S. Katayama T. Nakao M. Yoshimura H. Kajiya-Kanegae H. . ( 2014 ). CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes . Nucleic Acids Res. 42 , D666 – D670 . 10.1093/nar/gkt1145 24275496 

  27. Gallardo K. Le Signor C. Vandekerckhove J. Thompson R. D. Burstin J. ( 2003 ). Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation . Plant Physiol. 133 , 664 – 682 . 10.1104/pp.103.025254 12972662 

  28. Gemperline E. Keller C. Jayaraman D. Maeda J. Sussman M. R. Ané J.-M. . ( 2016 ). Examination of endogenous peptides in Medicago truncatula using mass spectrometry imaging . J. Proteome Res. 15 , 4403 – 4411 . 10.1021/acs.jproteome.6b00471 27726374 

  29. Gianinazzi-Pearson V. Arnould C. Oufattole M. Arango M. Gianinazzi S. ( 2000 ). Differential activation of H + -ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco . Planta 211 , 609 – 613 . 10.1007/s004250000323 11089672 

  30. Gil-Quintana E. Larrainzar E. Seminario A. Díaz-Leal J. L. Alamillo J. M. Pineda M. . ( 2013 ). Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean . J. Exp. Bot. 64 , 2171 – 2182 . 10.1093/jxb/ert074 23580751 

  31. Gil-Quintana E. Lyon D. Staudinger C. Wienkoop S. González E. M. ( 2015 ). Medicago truncatula and Glycine max : different drought tolerance and similar local response of the root nodule proteome . J. Proteome Res. 14 , 5240 – 5251 . 10.1021/acs.jproteome.5b00617 26503705 

  32. Giovannetti M. Sbrana C. Silvia A. Avio L. ( 1996 ). Analysis of factors involved in fungal recognition response to host-derived signals by arbuscular mycorrhizal fungi . New Phytol. 133 , 65 – 71 . 10.1111/j.1469-8137.1996.tb04342.x 

  33. González E. M. Larrainzar E. Marino D. Wienkoop S. Gil-Quintana E. Arrese-Igor C. ( 2015 ). Physiological responses of N2-fixing legumes to water limitation , in Legume Nitrogen Fixation in a Changing Environment: Achievements and Challenges , eds Sulieman S. Tran L. S. P. ( Cham : Springer International Publishing ), 1 – 133 . 

  34. Grimsrud P. A. den Os D. Wenger C. D. Swaney D. L. Schwartz D. Sussman M. R. . ( 2010 ). Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes . Plant Physiol. 152 , 19 – 28 . 10.1104/pp.109.149625 19923235 

  35. Harrison M. J. ( 1999 ). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis . Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 , 361 – 389 . 10.1146/annurev.arplant.50.1.361 15012214 

  36. Harrison M. J. Dewbre G. R. Liu J. ( 2002 ). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi . Plant Cell 14 , 2413 – 2429 . 10.1105/tpc.004861 12368495 

  37. Hoehenwarter W. Wienkoop S. ( 2010 ). Spectral counting robust on high mass accuracy mass spectrometers . Rapid Commun. Mass Spectrom. 24 , 3609 – 3614 . 10.1002/rcm.4818 21108307 

  38. Hooper C. M. Castleden I. R. Aryamanesh N. Jacoby R. P. Millar A. H. ( 2016 ). Finding the subcellular location of barley, wheat, rice and maize proteins: the compendium of crop proteins with annotated locations (cropPAL) . Plant Cell Physiol. 57 : e9 . 10.1093/pcp/pcv170 26556651 

  39. Hooper C. M. Tanz S. K. Castleden I. R. Vacher M. A. Small I. D. Millar A. H. ( 2014 ). SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome . Bioinformatics 30 , 3356 – 3364 . 10.1093/bioinformatics/btu550 25150248 

  40. Hossain Z. Komatsu S. ( 2014 ). Potentiality of soybean proteomics in untying the mechanism of flood and drought stress tolerance . Proteomes 2 , 107 – 127 . 10.3390/proteomes2010107 28250373 

  41. Hossain Z. Khatoon A. Komatsu S. ( 2013 ). Soybean proteomics for unraveling abiotic stress response mechanism . J. Proteome. Res. 12 , 4670 – 4684 . 10.1021/pr400604b 24016329 

  42. Hossain Z. Nouri M. Z. Komatsu S. ( 2012 ). Plant cell organelle proteomics in response to abiotic stress . J. Proteome. Res. 11 , 37 – 48 . 10.1021/pr200863r 22029473 

  43. Hummel J. Niemann M. Wienkoop S. Schulze W. Steinhauser D. Selbig J. . ( 2007 ). ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites . BMC Bioinform. 8 : 216 . 10.1186/1471-2105-8-216 17587460 

  44. Irar S. González E. M. Arrese-Igor C. Marino D. ( 2014 ). A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants . Physiol Plant 152 , 634 – 645 . 10.1111/ppl.12214 24754352 

  45. Joshi H. J. Hirsch-Hoffmann M. Baerenfaller K. Gruissem W. Baginsky S. Schmidt R. . ( 2011 ). MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data . Plant Physiol. 155 , 259 – 270 . 10.1104/pp.110.168195 21075962 

  46. Kalloniati C. Krompas P. Karalias G. Udvardi M. K. Rennenberg H. Herschbach C. . ( 2015 ). Nitrogen-fixing nodules are an important source of reduced sulfur, which triggers global changes in sulfur metabolism in Lotus japonicus . Plant Cell 27 , 2384 – 2400 . 10.1105/tpc.15.00108 26296963 

  47. Katam R. Sakata K. Suravajhala P. Pechan T. Kambiranda D. M. Naik K. S. . ( 2016 ). Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress . J. Proteomics 143 , 209 – 226 . 10.1016/j.jprot.2016.05.031 27282920 

  48. Komatsu S. Tougou M. Nanjo Y. ( 2015 ). Proteomic techniques and management of flooding tolerance in soybean . J. Proteome Res. 14 , 3768 – 3778 . 10.1021/acs.jproteome.5b00389 26234743 

  49. Kottapalli K. R. Rakwal R. Shibato J. Burow G. Tissue D. Burke J. . ( 2009 ). Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes . Plant Cell Environ. 32 , 380 – 407 . 10.1111/j.1365-3040.2009.01933.x 19143990 

  50. Krause A. Broughton W. J. ( 1992 ). Proteins associated with root-hair deformation and nodule initiation in Vigna unguiculata . Mol. Plant Microbe Interact. 5 , 96 – 103 . 10.1094/MPMI-5-096 

  51. Krusell L. Krause K. Ott T. Desbrosses G. Kramer U. Sato S. . ( 2005 ). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules . Plant Cell 17 , 1625 – 1636 . 10.1105/tpc.104.030106 15805486 

  52. Larrainzar E. Molenaar J. Wienkoop S. Gil-Quintana E. Alibert B. Limami A. . ( 2014 ). Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules . Plant Cell Environ. 37 , 2051 – 2063 . 10.1111/pce.12285 24471423 

  53. Larrainzar E. Riely B. K. Kim S. C. Carrasquilla-Garcia N. Yu H. J. Hwang H. J. . ( 2015 ). Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals . Plant. Physiol. 169 , 233 – 265 . 10.1104/pp.15.00350 26175514 

  54. Larrainzar E. Wienkoop S. Scherling C. Kempa S. Ladrera R. Arrese-Igor C. . ( 2009 ). Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery . Mol. Plant Microbe Interact. 22 , 1565 – 1576 . 10.1094/MPMI-22-12-1565 19888822 

  55. Larrainzar E. Wienkoop S. Weckwerth W. Ladrera R. Arrese-Igor C. Gonzalez E. M. ( 2007 ). Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress . Plant Physiol. 144 , 1495 – 1507 . 10.1104/pp.107.101618 17545507 

  56. Lee J. Lei Z. Watson B. S. Sumner L. W. ( 2013 ). Sub-cellular proteomics of Medicago truncatula . Front. Plant Sci. 4 : 112 . 10.3389/fpls.2013.00112 23641248 

  57. Lefebvre B. Timmers T. Mbengue M. Moreau S. Hervé C. Tóth K. . ( 2010 ). A remorin protein interacts with symbiotic receptors and regulates bacterial infection . Proc. Natl. Acad. Sci. U.S.A. 107 , 2343 – 2348 . 10.1073/pnas.0913320107 20133878 

  58. Lei Z. Elmer A. M. Watson B. S. Dixon R. A. Mendes P. J. Sumner L. W. ( 2005 ). A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula . Mol. Cell. Proteomics 4 , 1812 – 1825 . 10.1074/mcp.D500005-MCP200 16048909 

  59. Lehmann U. Wienkoop S. Tschoep H. Weckwerth W. ( 2008 ). If the antibody fails–a mass western approach . Plant J . 55 , 1039 – 1046 . 10.1111/j.1365-313X.2008.03554.x 18485062 

  60. Lim C. W. Park J. Y. Lee S. H. Hwang C. H. ( 2010 ). Comparative proteomic analysis of soybean nodulation using a supernodulation mutant, SS2-2 . Biosci. Biotechnol. Biochem. 74 , 2396 – 2404 . 10.1271/bbb.100421 21150121 

  61. Lyon D. Castillejo M. A. Mehmeti-Tershani V. Staudinger C. Kleemaier C. Wienkoop S. ( 2016 ). Drought and recovery: independently regulated processes highlighting the importance of protein turnover dynamics and translational regulation . Mol. Cell. Proteomics 15 , 1921 – 1937 . 10.1074/mcp.M115.049205 27001437 

  62. Lyon D. Castillejo M. A. Staudinger C. Weckwerth W. Wienkoop S. Egelhofer V. ( 2014 ). Automated protein turnover calculations from 15N partial metabolic labeling LC/MS shotgun proteomics data . PLoS ONE 9 : e94692 . 10.1371/journal.pone.0094692 24736476 

  63. Małolepszy A. Urbański D. F. James E. K. Sandal N. Isono E. Stougaard J. . ( 2015 ). The deubiquitinating enzyme AMSH1 is required for rhizobial infection and nodule organogenesis in Lotus japonicus . Plant J. 83 , 719 – 731 . 10.1111/tpj.12922 26119469 

  64. Marx H. Minogue C. E. Jayaraman D. Richards A. L. Kwiecien N. W. Siahpirani A. F. ( 2016 ). A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti . Nat. Biotechnol. 3 , 1198 – 1205 . 10.1038/nbt.3681 

  65. Matamoros M. A. Fernández-García N. Wienkoop S. Loscos J. Saiz A. Becana M. ( 2013 ). Mitochondria are an early target of oxidative modifications in senescing legume nodules . New Phytol. 197 , 873 – 885 . 10.1111/nph.12049 23206179 

  66. Mathesius U. Keijzers G. Natera S. H. A. Weinman J. J. Djordjevic M. A. Rolfe B. G. ( 2001 ). Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting . Proteomics 1 , 1424 – 1440 . 10.1002/1615-9861(200111)1:11 3.0.CO;2-J 11922602 

  67. Mbengue M. Camut S. de Carvalho-Niebel F. Deslandes L. Froidure S. Klaus-Heisen D. . ( 2010 ). The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation . Plant Cell 22 , 3474 – 3488 . 10.1105/tpc.110.075861 20971894 

  68. Melo P. M. Silva L. S. Ribeiro I. Seabra A. R. Carvalho H. G. ( 2011 ). Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration . Plant Physiol . 157 , 1505 – 1517 . 10.1104/pp.111.186056 21914816 

  69. Molesini B. Cecconi D. Pii Y. Pandolfini T. ( 2014 ). Local and systemic proteomic changes in Medicago truncatula at an early phase of Sinorhizobium meliloti infection . J. Proteome Res. 13 , 408 – 421 . 10.1021/pr4009942 24350862 

  70. Mun T. Bachmann A. Gupta V. Stougaard J. Andersen S. U. ( 2016 ). Lotus Base: an integrated information portal for the model legume Lotus japonicus . Sci. Rep. 6 : 39447 . 10.1038/srep39447 28008948 

  71. Nambu M. Tatsukami Y. Morisaka H. Kuroda K. Ueda M. ( 2015 ). Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation . J. Proteomics 125 , 112 – 120 . 10.1016/j.jprot.2015.04.034 25982383 

  72. Natera S. H. Guerreiro N. Djordjevic M. A. ( 2000 ). Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis . Mol. Plant. Microbe. Interact . 13 , 995 – 1009 . 10.1094/MPMI.2000.13.9.995 10975656 

  73. Nguyen T. H. Brechenmacher L. Aldrich J. T. Clauss T. R. Gritsenko M. A. Hixson K. K. . ( 2012 ). Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum . Mol. Cell Proteomics 11 , 1140 – 1155 . 10.1074/mcp.M112.018028 22843990 

  74. Obayashi T. Okamura Y. Ito S. Tadaka S. Aoki Y. Shirota M. . ( 2014 ). ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants . Plant Cell Physiol. 55 , 1 – 7 . 10.1093/pcp/pct193 24415768 

  75. Oehrle N. W. Sarma A. D. Waters J. K. Emerich D. W. ( 2008 ). Proteomic analysis of soybean nodule cytosol . Phytochemistry 69 , 2426 – 2438 . 10.1016/j.phytochem.2008.07.004 18757068 

  76. Oger E. Marino D. Guigonis J. M. Pauly N. Puppo A. ( 2012 ). Sulfenylated proteins in the Medicago truncatula - Sinorhizobium meliloti symbiosis . J. Proteomics 75 , 4102 – 4113 . 10.1016/j.jprot.2012.05.024 22634402 

  77. Panter S. Thomson R. de Bruxelles G. Laver D. Trevaskis B. Udvardi M. ( 2000 ). Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules . Mol. Plant Microbe Interact. 13 , 325 – 333 . 10.1094/MPMI.2000.13.3.325 10707358 

  78. Parsons H. T. Heazlewood J. L. ( 2015 ). Beyond the Western front: targeted proteomics and organelle abundance profiling . Front. Plant Sci. 6 : 301 . 10.3389/fpls.2015.00301 25999968 

  79. Paszkowski U. Kroken S. Roux C. Briggs S. P. ( 2002 ). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis . Proc. Natl. Acad. Sci. U.S.A. 99 , 13324 – 13329 . 10.1073/pnas.202474599 12271140 

  80. Penmetsa R. V. Cook D. R. ( 1997 ). A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont . Science 275 , 527 – 530 . 10.1126/science.275.5299.527 8999796 

  81. Pieterse C. M. Zamioudis C. Berendsen R. L. Weller D. M. Van Wees S. C. Bakker P. A. ( 2014 ). Induced systemic resistance by beneficial microbes . Annu. Rev. Phytopathol. 52 , 347 – 375 . 10.1146/annurev-phyto-082712-102340 24906124 

  82. Prayitno J. Imin N. Rolfe B. G. Mathesius U. ( 2006 ). Identification of ethylene-mediated protein changes during nodulation in Medicago truncatula using proteome analysis . J. Proteome. Res. 5 , 3084 – 3095 . 10.1021/pr0602646 17081060 

  83. Ramalingam A. Kudapa H. Pazhamala L. T. Weckwerth W. Varshney R. K. ( 2015 ). Proteomics and metabolomics: two emerging areas for legume improvement . Front. Plant Sci. 6 : 1116 . 10.3389/fpls.2015.01116 26734026 

  84. Rausch C. Daram P. Brunner S. Jansa J. Laloi M. Leggewie G. . ( 2001 ). A phosphate transporter expressed in arbuscule-containing cells in potato . Nature 414 , 462 – 470 . 10.1038/35106601 11719809 

  85. Recorbet G. Valot B. Robert F. Gianinazzi-Pearson V. Dumas-Gaudot E. ( 2010 ). Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species . Fungal Genet. Biol. 47 , 608 – 618 . 10.1016/j.fgb.2010.03.003 20226871 

  86. Recuenco-Munoz L. Offre P. Valledor L. Lyon D. Weckwerth W. Wienkoop S. ( 2015 ). Targeted quantitative analysis of a diurnal RuBisCO subunit expression and translation profile in Chlamydomonas reinhardtii introducing a novel Mass Western approach . J. Proteomics 113 , 143 – 153 . 10.1016/j.jprot.2014.09.026 25301535 

  87. Rose C. M. Venkateshwaran M. Volkening J. D. Grimsrud P. A. Maeda J. Bailey D. J. . ( 2012 ). Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis . Mol. Cell. Proteomics 11 , 724 – 744 . 10.1074/mcp.M112.019208 22683509 

  88. Ruiz-Lozano J. M. Collados C. Barea J. M. Azcón R. ( 2001 ). Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants . New Phytologist. 151 , 493 – 502 . 10.1046/j.0028-646x.2001.00196.x 

  89. Saalbach G. Erik P. Wienkoop S. ( 2002 ). Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea ( Pisum sativum ) symbiosomes . Proteomics 2 , 325 – 337 . 10.1002/1615-9861(200203)2:3 3.0.CO;2-W 11921448 

  90. Sainz M. Calvo-Begueria L. Pérez-Rontomé C. Wienkoop S. Abián J. Staudinger C. . ( 2015 ). Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism . Plant J. 81 , 723 – 735 . 10.1111/tpj.12762 25603991 

  91. Salavati A. Bushehri A. A. Taleei A. Hiraga S. Komatsu S. ( 2012 ). A comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supernodulating soybean variety . J. Proteomics 75 , 819 – 832 . 10.1016/j.jprot.2011.09.022 22005398 

  92. Sarma A. D. Emerich D. W. ( 2005 ). Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics . Proteomics 5 , 4170 – 4184 . 10.1002/pmic.200401296 16254929 

  93. Sarma A. D. Emerich D. W. ( 2006 ). A comparative proteomic evaluation of culture grown vs. nodule isolated Bradyrhizobium japonicum . Proteomics 6 , 3008 – 3028 . 10.1002/pmic.200500783 16688787 

  94. Schenkluhn L. Hohnjec N. Niehaus K. Schmitz U. Colditz F. ( 2010 ). Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome . J. Proteomics 73 , 753 – 768 . 10.1016/j.jprot.2009.10.009 19895911 

  95. Schulze W. X. Yao Q. Xu D. ( 2015 ). Databases for plant phosphoproteomics . Methods Mol. Biol. 1306 , 207 – 216 . 10.1007/978-1-4939-2648-0_16 25930705 

  96. Schüβler A. Schwarzott D. Walker C. ( 2001 ). A new fungal phylum, the Glomeromycota: phylogeny and evolution . Mycol. Res. 105 , 1413 – 1421 . 10.1017/S0953756201005196 

  97. Serna-Sanz A. Parniske M. Peck S. C. ( 2011 ). Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense . Mol. Plant Microbe Interact. 24 , 932 – 937 . 10.1094/MPMI-09-10-0222 21446788 

  98. Staudinger C. Mehmeti V. Turetschek R. Lyon D. Egelhofer V. Wienkoop S. ( 2012 ). possible role of nutritional priming for early salt and drought stress responses in Medicago truncatula . Front. Plant Sci. 3 : 285 . 10.3389/fpls.2012.00285 23267362 

  99. Staudinger C. Mehmeti-Tershani V. Gil-Quintana E. Gonzalez E. M. Hofhansl F. Bachmann G. . ( 2016 ). Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula . J. Proteomics 136 , 202 – 213 . 10.1016/j.jprot.2016.01.006 26812498 

  100. Tanz S. K. Castleden I. Hooper C. M. Vacher M. Small I. Millar H. A. ( 2013 ). SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis . Nucleic Acids Res. 41 , 1185 – 1191 . 10.1093/nar/gks1151 23180787 

  101. Tatsukami Y. Nambu M. Morisaka H. Kuroda K. Ueda M. ( 2013 ). Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation . BMC. Microbiol. 13 : 180 . 10.1186/1471-2180-13-180 23898917 

  102. Toth K. Stratil T. F. Madsen E. B. Ye J. Popp C. Antolín-Llovera M. . ( 2012 ). Functional domain analysis of the remorin protein LjSYMREM1 in Lotus japonicus . PLoS ONE 7 : 817 . 10.1371/journal.pone.0030817 22292047 

  103. Turetschek R. Lyon D. Desalegn G. Kaul H.-P. Wienkoop S. ( 2016 ). A Proteomic workflow using high-throughput de novo sequencing towards complementation of genome information for improved comparative crop science , in Proteomis in Systems Biology SE - 17 Methods in Molecular Biology , ed Reinders J. ( New York, NY : Springer ), 233 – 243 . 

  104. Valot B. Negroni L. Zivy M. Gianinazzi S. Dumas-Gaudot E. ( 2006 ). A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions . Proteomics 6 ( Suppl. 1 ), S145 – S155 . 10.1002/pmic.200500403 16511816 

  105. van de Velde W. Zehirov G. Szatmari A. Debreczeny M. Ishihara H. Kevei Z. . ( 2010 ). Plant peptides govern terminal differentiation of bacteria in symbiosis . Science 327 , 1122 – 1126 . 10.1126/science.1184057 20185722 

  106. van Loon L. C. Bakker P. A. Pieterse C. M. ( 1998 ). Systemic resistance induced by rhizosphere bacteria . Annu. Rev. Phytopathol. 36 , 453 – 483 . 10.1146/annurev.phyto.36.1.453 15012509 

  107. van Ness L. K. Jayaraman D. Maeda J. Barrett-Wilt G. A. Sussman M. R. Ané J. M. ( 2016 ). Mass spectrometric-based selected reaction monitoring of protein phosphorylation during symbiotic signaling in the model legume, Medicago truncatula . PLoS ONE 11 : e0155460 . 10.1371/journal.pone.0155460 27203723 

  108. van Wees S. C. Van der Ent S. Pieterse C. M. ( 2008 ). Plant immune responses triggered by beneficial microbes . Curr. Opin. Plant Biol. 11 , 443 – 448 . 10.1016/j.pbi.2008.05.005 18585955 

  109. Wan J. R. Torres M. Ganapathy A. Thelen J. DaGue B. B. Mooney B. . ( 2005 ). Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum . Mol. Plant-Microbe Interact. 18 , 458 – 467 . 10.1094/MPMI-18-0458 15915644 

  110. Wang X. Komatsu S. ( 2016 ). Gel-free/label-free proteomic analysis of endoplasmic reticulum proteins in soybean root tips under flooding and drought stresses . J. Proteome Res . 15 , 2211 – 2227 . 10.1021/acs.jproteome.6b00190 27224218 

  111. Watson B. S. Asirvatham V. S. Wang L. J. Sumner L. W. ( 2003 ). Mapping the proteome of barrel medic ( Medicago truncatula ) . Plant Physiol. 131 , 1104 – 1123 . 10.1104/pp.102.019034 12644662 

  112. Wienkoop S. ( 2013a ). Spectral count , in Encyclopedia of Systems Biology , eds Dubitzky W. Wolkenhauer O. Cho K.-H. Yokota H. ( New York, NY : Springer ), 1967 . 

  113. Wienkoop S. ( 2013b ). Selective reaction monitoring , in Encyclopedia of Systems Biology , eds Dubitzky W. Wolkenhauer O. Cho K.-H. Yokota H. ( New York, NY : Springer ), 1914 . 

  114. Wienkoop S. Saalbach G. ( 2003 ). Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules . Plant Physiol. 131 , 1080 – 1090 . 10.1104/pp.102.015362 12644660 

  115. Wienkoop S. Larrainzar E. Glinski M. Gonzalez E. M. Arrese-Igor C. Weckwerth W. ( 2008 ). Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry . J. Exp. Bot. 59 , 3307 – 3315 . 10.1093/jxb/ern182 18772307 

  116. Wienkoop S. Staudinger C. Hoehenwarter W. Weckwerth W. Egelhofer V. ( 2012 ). ProMEX - a mass spectral reference database for plant proteomics . Front. Plant Sci. 3 : 125 . 10.3389/fpls.2012.00125 22685450 

  117. Ye H. Gemperline E. Venkateshwaran M. Chen R. Delaux P. M. Howes-Podoll M. . ( 2013 ). MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis . Plant J . 75 , 130 – 145 . 10.1111/tpj.12191 23551619 

  118. Yin X. Komatsu S. ( 2016 ). Plant nuclear proteomics for unraveling physiological function . N. Biotechnol. 33 , 644 – 654 . 10.1016/j.nbt.2016.03.001 27004615 

  119. Zamioudis C. Pieterse C. M. J. ( 2012 ). Modulation of host immunity by beneficial microbes . Mol. Plant Microbe Intract . 25 , 139 – 150 . 10.1094/MPMI-06-11-0179 21995763 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로