$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기능성화장품을 위한 유효성분의 경피 전달 시스템
Transdermal Delivery System of Effective Ingredients for Cosmeceuticals 원문보기

大韓化粧品學會誌 = Journal of the society of cosmetic scientists of Korea, v.37 no.2, 2011년, pp.97 - 119  

조완구 (전주대학교 대체의학대학 기초의과학과)

초록

전 세계의 소비자들은 예전에 비해 외모, 건강 및 안락한 삶에 관심을 집중시키고 있다. 이와 같은 경향은 유효성분을 함유한 기능성화장품의 요구 또한 증대시키고 있다. 차별화된 제형을 이용한 감각적인 사용감이 구현된 처방은 실질적인 소비자 인지 수준의 화장품에 이용되고 있으며 그 결과로 화장품시장이 확대되고 있다. 이와 더불어 유효성분의 경피 전달을 통한 소비자 인지 수준의 제품을 개발하기 위해서 화장품 과학자는 첨단 의약품의 다양한 기술을 접목해야 한다. 다양한 경피 흡수 수단의 기술이 기능성 화장품에 사용되고 있다. 본 총설에서는 차세대 경피 전달 시스템으로서 큰 잠재력을 가진 경피 전달 시스템에 대해서 논하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

World consumers are now focusing on their health, well-being and appearance more than ever before. This trend is creating heightened demand for products formulated as cosmeceuticals with active ingredients. A significant number of innovative formulations are now being used in cosmetics with real con...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
피부는 어떤 수단으로 사용될 수 있는가? 피부는 인체에서 가장 넓은 기관으로 피하전달을 위한 경피 흡수 수단으로 사용될 수 있다. 경구 투여 시, 약효 발현과 함께 전신적 부작용이 일어날 수 있으며 피하주사의 경우는 일정 약물농도의 국소 적용이 힘들다.
경피흡수에서 몇 Da 이상의 물질은 피부 흡수가 불가능한가? 지난 50년 동안, 계면 활성제, 지방산, 지방산 에스테르, 그리고 아존(azone)같은 화합물들이 제한된 가운데도 경피 흡수 증진을 위해서 사용되어 왔다[2]. 경피흡수에서 4500 Da 이상의 물질은 피부 흡수가 불가능하다. 최근 높은 처리량(high-throughput)의 스크리닝 방법 발전과 분자 설계 등의 방법을 이용하여 경피 흡수 촉진 제를 개발하고 있다[3].
높은 처리량(high-throughput)의 스크리닝 방법 발전과 분자 설계 등의 방법을 이용한 경피 흡수 촉진 제의 예시는 무엇이 있는가? 최근 높은 처리량(high-throughput)의 스크리닝 방법 발전과 분자 설계 등의 방법을 이용하여 경피 흡수 촉진 제를 개발하고 있다[3]. 그중 한 가지 예로서 Tat (tran-sactivator of transcription)를 부분적으로 활용한 시도 등이 진행되고 있다[4-6]. HIV-1에서 유래한 TAT (transactivating transcriptional activator) 단백질은 세포 내로의 침투가 용이한 것으로 보고되고 있으며 TAT 펩타이드를 유효한 단백질에 결합하여 단백질의 피부 침투를 연구하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (97)

  1. G. Cevc and U. Vierl, Nanotechnology and transdermal route: a state of the art review and critical appraisal, J. Control. Release, 141, 277 (2010). 

  2. C. H. Purdon, C. G. Azzi, J. Zhang, E. W. Smith, and H. I. Maibach, Penetration enhancement of transdermal delivery-current permutations and limitations, Crit. Rev. Ther. Drug Carrier. Syst., 21, 97 (2004). 

  3. P. Karande, A. Jain, and S. Mitragotri, Discovery of transdermal penetration enhancers by high-throughput screening, Nat. Biotechnol., 22, 192 (2004). 

  4. J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. H. Lee, Y. C. Yoo, W. G. Cho, S. Y. Choi, and S. H. Kang, Penetration enhancement in mouse skin and lipolysis in adipocytes by TATGKH, a mew cosmetic ingredient, J. Comet. Sci., 54, 483 (2003). 

  5. J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. S. Kang, and W. G. Cho, The penetration enhancement and lipolytic effects of TATGKH, both in vitro, ex-vivo, and in-vivo, IFSCC Magazine, 7(2), 103 (2004). 

  6. N. G. Kang, J. M. Lim, M. Y. Chang, S. G. Park, W. G. Cho, and Y. S. Choi, Modified superoxide dismutase for cosmeceuticals, IFSCC Magazine, 8(2), 87 (2005). 

  7. Y. A. Shchipunov and E. V. Shumilina, Lecithin organogels: role of polar solvent and nature of intermolecular interactions, Colloid J., 58, 117 (1996). 

  8. P. Schurtenberger, R. Scartazzini, L. J. Magid, M. E. Leser, and P. L. Luisi, Structural and dynamic properties of polymer-like reverse micelles, J. Phys. Chem., 94, 3695 (1990). 

  9. D. Grace, J. Rogers, K. Skeith, and K. Anderson, Topical diclofenac versus placebo: a double blind, randomized clinical trial in patients with osteoarthritis of the knee, J. Rheumatol., 26, 2659 (1999). 

  10. F. Dreher, P. Walde, P. Walter, and E. Wehrli, Interaction of a lecithin microemulasion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131 (1997). 

  11. L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, and S. Y. Chan, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 106, 88 (2005). 

  12. P. F. Lim, X. Y. Liu, L. Kang, P. C. Ho, Y. W. Chan, and S. Y. Chan, Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol, Int. J. Pharm., 311, 157 (2006). 

  13. S. Pisal, V. Shelke, K. Mahadik, and S. Kadam, Effect of organogel components on in vitro nasal delivery of propranolol hydrochloride, AAPS Pharm. Sci. Tech., 5, e63 (2004). 

  14. R. Kumar and O. P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review, AAPS Pharm. Sci. Tech.. 6, e298 (2005). 

  15. R. Scartazzini and P. L. Luisi, Organogels from lecithins, J. Phys. Chem., 92, 829 (1988). 

  16. Y. A. Shchipunov and E. V. Shumilina, Lecithin bridging by hydrogen bonds in the organogel, Mater. Sci. Eng., C, Biomim. Supramol. Syst., 3(1), 43 (1995). 

  17. H. Willimann and P. L. Luisi, Lecithin organogels as matrix for transdermal transport of drugs, Biochem. Biophys. Res. Commun., 177, 897 (1991). 

  18. H. Willimann, P. Walde, P. L. Luisi, A. Gazzaniga, and F. Stroppolo, Lecithin organogels as matrix for transdermal transport of drugs, J. Pharm. Sci., 81, 871 (1992). 

  19. S. Bhatnagar and S. P. Vyas, Organogel-based systems for transdermal delivery of propranolol, J. Microencapsul., 2, 431 (1994). 

  20. C. Nastruzzi and R. Gambari, Antitumor activity of (trans)dermally delivered aromatic tetra-amidines, J. Control Release, 29, 53 (1994). 

  21. F. Dreher, P. Walde, P. Walther, and E. Wehrli, Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131 (1997). 

  22. U. S. Patent 6,306,383 (2001). 

  23. U. S. Patent 28,789 (2002). 

  24. R. Z. Aboofazeli, H. Zia, and T. E. Needham, Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement, Drug Deliv., 9, 239 (2002). 

  25. S. B. Hoffman, A. R. Yoder, and L. A. Trepanier, Bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats, J. Vet. Pharmacol. Ther., 25, 189 (2002). 

  26. A. Arellano, S. Santoyo, C. Martin, and P. Ygartua, Influence of propylene glycol and isopropyl myristate on in vitro percutaneous penetration of diclofenac sodium from carbopol gel, Eur. J. Pharm. Sci., 7, 129 (1999). 

  27. U. S. Patent 6,632,843 (2003). 

  28. S. Murdan, G. Gregoriadis, and A. T. Florence, Non-ionic surfactant based organogels incorporating niosomes, S.T.P. Pharm. Sci., 6, 44 (1996). 

  29. N. Jibry and S. Murdan, In vivo investigation, in mice and man, into the irritation potential of novel amphiphilogels being studied as transdermal drug carriers, Eur. J. Pharm. Biopharm., 58, 107 (2004). 

  30. R. C. Robinson, Plastibase, a hydrocarbon gel ointment base, Bull. Sch. Med. Univ. Md., 40, 86 (1955). 

  31. S. Goto, M. Kawata, T. Suzuki, N. S. Kim, and C. Ito, Preparation and evaluation of eudragit gels. I: eudragit organogels containing drugs as rectal sustainedrelease preparations, J. Pharm. Sci., 80, 958 (1991). 

  32. M. C. Jones, P. Tewari, C. Blei, K. Hales, D. J. Pochan, and J. C. Leroux, Self-assembled nanocages for hydrophilic guest molecules, J. Am. Chem. Soc., 128, 14599 (2006). 

  33. T. Penzes, I. Csoka, and I. Eros, Rheological analysis of the structural properties effecting the percutanneous absorption and stability in pharmaceutical organogels, Rheol. Acta, 43, 457 (2004). 

  34. L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, and S. Y. Chan, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 106, 88 (2005). 

  35. B. Mishra, B. B. Patel, and S. Tiwari, Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery, Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 9 (2010). 

  36. E. Reverchon, G. D. Porta, and R. Taddeo, Solubility and micronization of griseofulvin in supercritical CHF3, Ind. Eng. Chem. Res., 34, 4087 (1995). 

  37. R. H. Mueller, K. Maeder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art, Eur. J. Pharm. Biopharm., 50, 161 (2000). 

  38. B. Jiang, L. Hu, C. Gao, and J. Shen, Ibuprofenloaded nanoparticles prepared by a co-precipitation method and their release properties, Int. J. Pharm., 304, 220 (2005). 

  39. X. Chen, T. J. Young, M. Sarkari, R. O. Williams, and K. P. Johnston, Preparation of cyclosporine a nanoparticles by evaporative precipitation into aqueous solution, Int. J. Pharm., 242, 3 (2002). 

  40. D. Quintanar-Guerrero, E. AlIeman, H. Fessi, and E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers, Drug Dev. Ind. Pharm., 24, 1113 (1998). 

  41. H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, and S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm., 55, R1 (1989). 

  42. M. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion-diffusion process, J. Colloid Interface Sci., 317, 458 (2008). 

  43. J. Jung and M. Perrut, Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluids, 20, 179 (2001). 

  44. R. Jagannathan, G. Irvin, T. Blanton, and S. Jagannathan, Organic nanoparticles: preparation, selfassembly, and properties, Adv, Funct. Mater, 16, 747 (2006). 

  45. C. Gomez-Gaete, N. Tsapis, M. Besnard, A. Bochot, and E. Fattal, Encapsulation of dexamethasone into biodegradable polymeric nanoparticles, Int. J. Pharm., 331, 153 (2007). 

  46. S. A. Wissing, O. Kayser, and R. H. Muller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug. Deliv. Rev., 56, 1257 (2004). 

  47. J. Pardeike, A. Hommoss, and R. H. Muller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 366, 170 (2009). 

  48. D. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion diffusion process, J. Colloid Interface Sci., 317, 458 (2008). 

  49. Z. B. Zhang, Z. G. Shen, J. X. Wang, H. X. Zhang, H. Zhao, J. F. Chen, and J. Yun, Micronization of silybin by the emulsion solvent diffusion method, Int. J. Pharm., 376, 116 (2009). 

  50. K. A. Shah, A. A. Date, M. D. Joshi, and V. B. Patravale, Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery, Int. J. Pharm., 345, 163 (2007). 

  51. T. K. Jain, J. Richey, M. Strand, D. L. Leslie- Pelecky, C. A. Flask, and V. Labhasetwar, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials. 29, 4012 (2008). 

  52. Z. Chunfu, C. Jinquan, Y. Duanzhi, W. Yongxian, F. Yanlin, and T. Jiaju, Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy, Appl. Radiat. Isot., 61, 1255 (2004). 

  53. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Au nanoparticles target cancer, Nano, Today, 2, 18 (2007). 

  54. P. Blasi, S. Giovagnoli, A. Schoubben, M. Ricci, and C. Rossi, Solid lipid nanoparticles for targeted brain drug delivery, Adv. Drug Deliv. Rev., 59, 454 (2007). 

  55. I. I. Slowing, J. L. Vivero-Escoto, C. Wu, and V. S. Li, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278 (2008). 

  56. H. Cesur, I. Rubinstein, A. Pai, and H. Onyuksel, Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer, Nanomedicine, 5(2), 178 (2009). 

  57. D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacol Rev., 51, 691 (1999). 

  58. S. K. Sahoo and V. Labhasetwar, Nanotech approaches to drug delivery and imaging, Drug Discov. Today, 8, 1112 (2003). 

  59. D. D. Lasic, Sterically stabilized liposomes in cancer therapy and gene delivery, Curr. Opin. Mol. Ther., 1, 177 (1999). 

  60. N. Jain, B. P. Gupta, N. Thakur, R. Jain, J. Banweer, D. K. Jain, and S. Jain, Phytosome: a novel drug delivery system for herbal medicine, Int. J. Pharm. Sci. and Drug Res., 2(4), 224 (2010). 

  61. R. Peschka, C. Dennehy, and Jr. F. C. Szoka, A simple in-vitro model to study the release kinetics of liposomes encapsulated material, J. Control. Release, 56, 41 (1998). 

  62. N. Moussaoui, M. Cansell, and A. Denizot, Marinosomes marine lipid-based liposomes: physical characterization and potential applications in cosmetics, Int. J. Pharm., 242, 361 (2002). 

  63. V. B. Patravale and S. D. Mandawgade, Novel cosmetic delivery systems: an application update, Int. J. Cosmet. Sci., 30, 19 (2008). 

  64. K. Stanzl, L. Zastrow, J. Rdding, and C. Artmann, The effectiveness of molecular oxygen in cosmetic formulation, Int. J. Cosmet. Sci., 18(3), 137 (1996). 

  65. G. Nicolaos, S. Crauste-Manciet, R. Farinotti, and D. Brossard, Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion, Int. J. Pharm., 263, 165 (2003). 

  66. D. S. Mou, H. B. Chen, D. R. Du, C. W. Mao, J. L. Wan, H. B. Xu, and X. L. Yang, Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs, Int. J Pharm., 353, 270 (2008). 

  67. C. C. Muller-Goymann, Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration, Eur. J. Pharm. Biopharm., 58(2), 343 (2004). 

  68. W. K. Fong, T. Hanley, and B. J. Boyd, Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo, J. Control. Release, 135, 218 (2009). 

  69. D. I. Nesseem, Formulation and evaluation of itraconazole via liquid crystal for topical delivery system, J. Pharm. Biomed. Anal., 26(3), 387 (2001). 

  70. D. Libster, A. Aserin, E. Wachtel, G. Shoham, and N. Garti, An $H_{II}$ liquid crystal-based delivery system for cyclosporin A: physical characterization, J. Colloid Interface Sci., 308(2), 514 (2007). 

  71. C. Guo, J. Wang, F. Cao, R. J. Lee, and G. Zhai, Lyotropic liquid crystal systems in drug delivery, Drug Discov. Today, 15, 1032 (2010). 

  72. S. Z. Mohammady, M. Pouzot, and R. Mezzenga, Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment, Biophys. J., 96(4), 1537 (2009). 

  73. S. Y. Lin, C. J. Ho, and M. J. Li, Precision and reproducibility of temperature response of a thermo- responsive membrane embedded by binary liquid crystals for drug delivery, J. Control. Release, 73(2,3), 293 (2001). 

  74. S. Y. Lin, H. L. Lin, and M. J. Li, Manufacturing factors affecting the drug delivery function of thermo- responsive membrane prepared by adsorption of binary liquid crystals, Eur. J. Pharm. Sci., 17(3), 153 (2002). 

  75. J. Bender, M. B. Ericson, N. Merclin, V. Ianie, A. Rosen, S. Engstrom, and J. Moan, Lipid cubic phases for improved topical drug delivery in photodynamic therapy, J. Control. Release, 106, 350 (2005). 

  76. E. Esposito, R. Cortesi, M. Drechsler, L. Paccamiccio, P. Mariani, C. Contado, E. Stellin, E. Menegatti, F. Bonina, and C. Puglia, Cubosome dispersions as delivery systems for percutaneous administration of indomethacin, Pharm. Res., 22, 2163 (2005). 

  77. L. B. Lopes, J. L. C. Lopes, D. C. R. Oliveira, J. A. Thomazini, M. T. J. Garcia, M. C. A. Fantini, J. H. Collett, and M. V. L. B. Bentley, Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery, Eur. J. Pharm. Biopharm.. 63, 146 (2006). 

  78. L. B. Lopes, D. A. Ferreira, D. Paula, M. T. J. Garcia, J. A. Thomazini, M. C. A. Fantini, and M. V. L. B. Bentley, Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A, Pharm. Res., 23, 1332 (2006). 

  79. L. B. Lopes, F. F. F. Sperettaa, and M. V. L. B. Bentley, Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems, Eur. J. Pharm. Sci., 32, 209 (2007). 

  80. M. Cohen-Avrahami, A. Aserin, and N. Garti, HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac, Colloid Surf. B, 77, 131 (2010). 

  81. J. Frelichowska, M. Bolzinger, J. Valour, H. Mouaziz, J. Pelletier, and Y. Chevalier, Pickering W/O emulsions: drug release and tropical delivery, Int. J. Pharm., 368, 7 (2009). 

  82. J. Frelichowska, M. Bolzinger, J. Pelletier, J. Valour, and Y. Chevalier, Tropical delivery of lipophilic drugs from O/W pickering emulsions, Int. J. Pharm., 371, 56 (2009). 

  83. S. A. Fotinos, Handbook of Cosmetic Science and Technology, eds. A. O. Barel, M. Paye, and H. I. Maibach, 233, Marcel Dekker Inc., New York (2001). 

  84. S. H. Jeong, W. G. Cho, J. K. Choi, and J. P. Ryoo, A systematic approach to cosmetic patch development, Cosmet. Toilet., 116(1), 39 (2001). 

  85. W. G. Cho, M. J. Rang, Y. S. Song, Y. H. Lim, and H. W. Park, Enhanced transdermal delivery of vitamin C derivative using gel patch with flexible thin layer battery, J. Soc. Cosmet. Sci., Kor., 33(1), 23 (2007). 

  86. S. Mitragotri and J. Kost, Low-frequency sonophoresis, Adv. Drug Deliv. Rev., 56, 589 (2004). 

  87. D. Bommannan, H. Okuyama, P. Stauffer, and R. H. Guy, The use of high-frequency ultrasound to enhance transdermal drug delivery, Pharm. Res., 9, 559 (1992). 

  88. S. Mitragotri, Synergistic effect of enhancers for transdermal drug delivery, Pharm. Res., 17, 1354 (2000). 

  89. P. Santoianni, M. Nino, and G. Calabro, Intradermal drug delivery by low frequency sonophoresis (25 kHz), Dermatol. Online J., 10, 24 (2004). 

  90. N. Katz, D. Shapiro, T. Herrmann, J. Kost, and L. Custer, Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device, Anesth. Analg., 98, 371 (2004). 

  91. J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, A multichannel neural probe for selective chemical delivery at the cellular level, IEEE Trans. Biomed. Eng., 44, 760 (1997). 

  92. J. H. Park, S. O. Choi, S. M. Seo, Y. B. Choy, R. Mark, and A. Prausnitz, Microneedle roller for transdermal drug delivery, Eur. J. Pharm. Biopharm., 76, 282 (2010). 

  93. M. M. Badrana, J. Kuntsche, and A. Fahra, Skin penetration enhancement by a microneedle device ( $dermaroller^{{\circledR}}$ ) in vitro: dependency on needle size and applied formulation, Eur. J. Pharm. Sci., 36, 511 (2009). 

  94. El-S. Khafagy, M. Morishita, Y. Onuki, and K. Takayama, Current challenges in non-invasive insulin delivery systems: a comparative review, Adv. Drug Deliv. Rev.. 59, 1521 (2007). 

  95. C. Ramachandran and D. Fleisher, Transdermal delivery of drugs for the treatment of bone diseases, Adv. Drug Deliv. Rev.. 42, 197 (2000). 

  96. H. S. Tan and W. R. Pfister, Pressure-sensitive adhesives for transdermal drug delivery systems, PSTT, 2(2), 60 (1999). 

  97. J. A. Subramony, A. Sharma, and J. B. Phipps, Microprocessor controlled transdermal drug delivery, Int. J. Pharm., 317, 1 (2006). 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로