$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술
Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations 원문보기

韓國軍事科學技術學會誌 = Journal of the KIMST, v.18 no.2, 2015년, pp.189 - 200  

이기영 (해군사관학교 기계조선공학과)

Abstract AI-Helper 아이콘AI-Helper

This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate i...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문은 생체모방형 수중로봇을 아 해군의 유인 플랫폼의 접근이 거부된 연안 해역에서 원격센서로 은밀하게 작전반경을 확장시키는 유용한 수단으로 해양 작전에 활용할 수 있는 운용개념들과 이를 구현하기 위한 핵심 기술들을 제시하였다. 생체모방 수중로봇은 대부분 1 m 내외의 소형급 수중로봇으로 해양작전 임무 수행에 요구되는 항속시간과 탐지능력이 현재의 기술수준으로는 매우 제한적이다.
  • 이에 본 논문은 서해 연안과 같은 천해 및 극천해 해역과 서해 5도 해역과 같이 북한의 수중 침투 전력이 밀집한 지역에 대한 은밀 감시 정찰 도구의 확대 필요성 제기되고 있는 이때에 생체모방형 수중로봇의 특장점을 활용한 원격센서로의 운용 등 생체모방형 수중로봇 시스템 및 기술의 군사적 활용 방안을 제시하였다. 즉, 물고기모양 수중로봇을 포함한 생체모방형 수중로봇의 개발 동향 분석을 통하여 한반도 해양작전 환경에서 우리 해군의 의미 있는 작전 요소로 진입할 수 있는 해양작전에의 운용개념 및 이의 효과적 운용방법과 이들 시스템 개발에 요구되는 핵심기술들을 제시하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
우리나라의 어떤 지형 특징이 해양으로부터의 침투에 취약하게 만드는가? 삼면이 바다인 한반도의 지형 특성상 연안에는 주요 군사시설 뿐 아니라 국가의 기반시설들인 항만, 원자력발전소, 석유 및 가스 저장시설 등과 해상교량을 비롯한 여러 가지 해양플랫폼이 위치하고 있어 비정규전시 해양으로부터의 침투에 의한 비대칭 공격에 상당히 취약하다. 더욱이 육지에 근접한 연안 해역에서의 해양작전은 대양과 근해의 전환해역이면서 모든 해상세력의 출발지점이면서 도착지점이 되므로 가장 위험한 작전환경에 노출될 수 있다.
어뢰형태의 무인잠수정이 갖는 장점은 무엇인가? 현재 국내외에서 개발 중인 대부분의 군사용 수중로봇은 어뢰형태의 무인잠수정이다. 어뢰형은 유체저항을 최소화하고 추진속도를 극대화하여 넓은 지역의 임무수행이 가능한 장점을 가지고 있다. 우리나라의 경우에는 심해의 수중탐사를 위한 수중로봇이 해양과학기술원과 같은 연구기관을 중심으로 개발되는 등어느 정도의 기술 성숙을 이루어 가고 있으나, 극천해역에 적합한 수중로봇 기술 개발은 상대적으로 출발이 늦었다.
대한민국 해군에서 자율무인잠수정 개발이 시작된 개기는 무엇인가? 우리 해군에서는 2006년 정찰용 무인잠수정 운용개념을 검토하여, 2008년에 합동개념요구능력서에 수록 하였다. 2011년에는 신개념기술시범사업의 일환으로 수중탐색용 자율무인잠수정 개발이 시작되어 해양작전에의 활용을 모색하고 있다. 이제는 정부차원의 신무기체계 투자 확대 정책의 일환으로 국방무인로봇 기술 개발 전략을 수립 시행하고자 하는 의지와 발맞추어 우리 군에서도 수중로봇 등의 무인체계를 활용한 작전운용 개념을 정립하고 이에 요구되는 기술들을 개발해야할 중요한 시점에 와있다[1-4].
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. ROK Joint Chiefs of Staff, Joint Unmanned Operations, 2008. 

  2. Lee, K., and Joo, S., "Roles of UUVs in the Korean Peninsula Anti-Submarine Warfare Environments," Naval Strategy of Joint Forces Military University, Vol. 154, pp. 78-103, 2012. 

  3. Moon, K., Kim, I., Lee, Y., Lee, S., Lee K., and Yoon, K., Defense Unmanned Robot Technology, DAPA/ADD, 2013. 

  4. Kim, Y., and Kim, J., "Trend of Maritime Unmanned Combat System Development," Defense Science and Technology Plus, Vol. 150, May 1, 2012. 

  5. Kho, H., Hong, H., Park, Y., and Kim, Y., Foreseeable Future Weapons, Defense Agency for Technology and Quality, 2011. 

  6. Fish, F. F. and Lauder, G. V., "Passive and Active Flow Control by Swimming Fishes and Mammals," Annu. Rev. Fluid Mech. Vol. 38, pp. 193-224, 2006. 

  7. Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P., "Hydrodynamics of Fishlike Swimming," Annu. Rev., Fluid Mech, Vol. 32, p. 3553, 2000. 

  8. Barrett, D., Grosenbaugh, M., and Triantafyllou, M., "The Optimal Control of a Flexible Hull Robotic Undersea Vehicle Propelled by an Oscillating Foil," Proc. IEEE AUV Symp., p. 109, 1996. 

  9. Lindsey, C. C., "Form, Function and Locomotory Habits in Fish," in Fish Physiology, Vol. VII Locomotion, Academic, New York, pp. 1-100, 1978. 

  10. Sitorus, P. E., Nazaruddin, Y. Y., Leksono, E. and Budiyono, A., "Design and Implementation of Paired Pectoral Fin locomotion of Labriform Fish Applied to a Fish Robot," J. of Bionic Engineering, Vol. 6, No. 1, pp. 37-45, 2009. 

  11. Toda, Y., Danno, M., Sasajama, M., and Miki, S., "Model Experiments on the Squid-.like Underwater Vehicle with Two Undulating Side Fins," The 4th International Symposium on Aero Aqua Biomechanisms, China, 2009. 

  12. Wang, W., Yu, J., Ding, R., and Tan, M., "Bio-inspired Design and Realization of a Novel Multimode Amphibious Robot," IEEE international Conference on Automation and Logistics, pp. 140-145, 2009, 

  13. Yu, J., Su, Z., Wang, M., Tan, M., and Zhang, J., "Control of Yaw and Pitch Maneuvers of a Multilink Dolphin Robot," IEEE Transactions on Robotics, Vol. 28, No. 2, pp. 318-329, 2012. 

  14. Singer, P. W., Wired for War, Penguin Press Inc, USA, 2009. 

  15. Witting, J. H., Ayers, J., and Safak, K., "Development of a Biomimetic Underwater Ambulatory Robot: Advantages of Matching Biomimetic Control Architecture with Biomimetic Actuators," Proc., of SPIE Vol. 4196, 2000. 

  16. Licht, S., Polodora, V., Flores, M., Hover, F. S., and Triantafyllou, M. S., "Design and Projected Performance of Flapping Foil AUV," IEEE Journal of Engineering, Vol. 39, 2004. 

  17. Liu, J., "Modelling and Online Optimization of Robotic Fish Behaviors," Ph.D. Thesis, University of Essex, 2007. 

  18. Hu, H., "Biologically Inspired Design of Autonomous Robotic Fish at Essex," Proc. IEEE SMC UK-RI, 2006. 

  19. Hirata, K., "A Semi Free Piston Stirling Engine for a Fish Robot," Proc. of 10th Intl' Stirling Engine Conference, 2001. 

  20. Liang, J., Wang, T., Wang, S., Zou, D., Sun, J., "Experiment of Robot Fish Aided Underwater Archeology," Proc. of International Conference on Robotics and Biomimetics, 2005. 

  21. Liang, J., Wang, T., Wang, S., Zou, D., and Sun, J., "Experiment of Robofish Aided Underwater Archaeology," Proc. of IEEE ROBIO 2005, 2005. 

  22. Liang, J., Wang, T., Zou, D., Wang, S., and Wang, Y., "Trial Voyage of SPC-II Fish Robot," Transaction of Beijing University, Vol. 31, No. 7, pp. 709-713, 2005. 

  23. Weng, J. et al, "Research on Robot Learning and Development in China," Proc. International Conference on Development and Learning, 2006. 

  24. Wang, T., Wen, L., Liang, J. Wu, G., "Fuzzy Vorticity Control of Biomimetic Robotic Fish Using Flapping Lunate Tail," J. Bionic Engineering, 2010. 

  25. Chung, C., Lee, S., Cha, Y., Kim, K., and Ryuh, Y., "Mechanical Design of Biomimetic Fish Robot," Proc. of Korean Society of Precision Engineering and Manufacturing, pp. 611-612, 2009. 

  26. Jun, B., Lee, P., Kim, B., and Shin, H., "Development of Seabed Walking Robot CR200 and It's Application Strategy in the Underwater Exploration," Proc. of RAOSTAS, pp. 1738-1742, 2013. 

  27. Atherton, E., "Autonomous Fish; Swarms, Surveillance, and Swimming," Boston Engineering, TS1166-ROBO, 2009. 

  28. Vagancy, J., Gurfinkel, L., Jankins, K., Wagner, T., and Summit, S., "HAUV System Performance Enhancement for Use by EOD Units," 8th Intl' Symposium on Technology and Mine Problem, NPGS, 2008. 

  29. Beard, J., "DARPA's Bio-revolution," Biologybiomedical_service(online), 2008. 

  30. Shao, J., Wang, L., and Yu, J., "Development of an Artificial Fish-like Robot and Its Application in Cooperative Transportation," Control Engineering Practice, Vol. 16, pp. 569-584, 2008. et al, 2007. 

  31. Budiyono, A., "Advances in Unmanned Underwater Vehicles Technologies: Modeling, Control and Guidance Perspectives," Indian Journal of Marine Science, Vol. 38, No. 3, pp. 282-295, 2009. 

  32. Curcio, J., Leonardo, J., Vaganay, J., Patrikalakis, A., Bahr, A., Battle, D, Schmidt, H., & Grund, M., "Experiments in Moving Baseline Navigation Using Autonomous Surface Craft," OCEANS, 2005, Proc. of MTS/IEEE, Vol. 1, pp. 730-735, 2005. 

  33. Scott, R., "New Coastal Submarine Concepts Get Ready to Break the Surface," Jane's Intl' Defence Review, May, 2008. 

  34. Rui, G., and Chitre, M., "Cooperative Positioning using Rage-Only Measurements Between Two AUVs," Oceans 2010 IEEE, Sydney, 2010. 

  35. Koay, T. B., Tan, Y. Y., Eng, Y. H., Gao, R., Chitre, M., Chew, J. L., Chandhavarkar, N., Khan, R. R., Taher, T., & Koh, J., "STARFIS- A Small Team of Autonomous Robot Fish," Indian Journal of Geo-Marine Sciences, Vol. 40, No. 2, pp. 157-167, 2011. 

  36. Chitre, M, "Teamwork among AUVs," AUV Sensors & Subsystem Workshop, Hawaii, 2010. 

  37. Kim, C., Kang, S., Hur, G., Kim, J., Jeon, M., and Yang, W., "The Course of Technology Development of Biomimetic Autonomous Robots," ADDR-115-110490, 2011. 

  38. Aghababa, M. P., Amrollanhi, M. H., and Borjkhani, M., "Application of GA, PSO, and ACO Algorithmic to Path Planning of Autonomous Underwater Vehicles," Journal of Marine Science and Application, Vol. 11, No. 3, pp. 378-386, 2012. 

  39. Wenjing, Z., Tiedong, Z., Le, W., and Zaibai, Q., "An Improved Association Method of SLAM Based on Ant Colony Algorithm," Proc. ICIEA 2009, pp. 1545-1548, 2009. 

  40. Ayers, J., Witting, J., "Biomimetic Approaches to the Control of Underwater Walking Machines," Phil. Trans., R. Soc., A., Vol. 365, pp. 273-295, 2007. 

  41. Dias, M., Zlot, R., Kalra, N., & Stentz, A., "Market-based Multirobot Coordination: A Survey and Analysis," Proceedings of the IEEE, Vol. 94, No. 7, pp. 1257-1270, 2006. et al, 2006. 

  42. Hirata, K., "A semi Free Piston Stirling Engine for a Fish Robot," Proc. of 10th Intl' Stirling Engine Conference, 2001. 

  43. Taylor, G., Burns, J., Kammann, S., Powers, W., and Welsh, T., "The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator," IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 539-547, 2001. 

  44. Tadesse, Y., Vilanueva, A., Hainess, C., Novitski, D., Baughman, R., and Priya, S., "Hydrogen-Fuel Powered Bell Segments of Biomimetic Jellyfish," Smart Materials and Structures, Vol. 21, pp. 1-17, 2012. 

  45. Chu, W., Lee, K., Song, S., Han, M., Lee, J., Kim, H., Kim, M., Park, Y., Cho, K., and Ahn, S., "Review of Biomimetic Underwater Robots Using Smart Actuators," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 7, pp. 1281-1292, 2012. 

  46. Bandyopadhyay, P. R., "Trends in Biorobotic Autonomous Undersea Vehicles," IEEE J., Oceanic Engineering, Vol. 30, pp. 109-139, 2005. 

  47. Wang, Z., Hang, G., Li, J., Wang, J., & Xiao, K., "A micro-Robot Fish with Embedded SMA Wire Actuated Flexible Biomimetic Fin," Sensors and Actuators A, Vol. 144, pp. 354-360, 2008. 

  48. Guo, S., Fukuda, T. & Asaka, K., "A New Type of Fish-like Underwater Microrobot," IEEE/ASME Transactions on Mechatronics, Vol. 8, pp. 136-141, 2003. 

  49. Aravamudhan, S. and Bhansali, S., "Reinforced Piezoelectric Pressure Sensor for Ocean Depth Measurements," Sensors and Actuators A, Vol. 142, pp. 111-117, 2008. 

  50. Ito, M., Okada, N., Takabe, M., Otonari, M., Akai, D., Sawada, K., and Ishida, M., "High Sensitivity Ultrasonic Sensor for Hydrophone Applications Using an Epitaxial Pb(Zr, Ti) $O_3$ Film Grown on SrRu $O_3$ /Pt/ ${\gamma}$ -Al2 $O_3$ /Si," Sensor and Actuators A, Vol. 145, pp. 278-282, 2008. 

  51. Zhou, Z., and Liu, Z., "Biomimetic Cilia Based on MEMS Technology," Journal of Bionic Engineering, Vol. 5, pp. 358-365, 2008. 

  52. Johnson, E. A. C., Bonser, R. H. C., and Jeronimidis, G., "Recent Advances in Biomimetic Sensing Technologies," Phil. Trans., R. Soc., A., Vol. 367, pp. 1559-1569, 2009. 

  53. Van Barr, J. J., Wiegerink, R. J., Iammerink, T. S. J., Krijnen, G. J. M., and Elwenspoek, M., "Micromachined Structures for Thermal Measurements of Fluid and Flow Parameters," J. Micromech. Microeng., Vol. 11, pp. 311-318, 2001. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로