$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Increased attention has been paid to the presence of veterinary antibiotics in various environmental matrices due to their toxicological behavior in the ecosystem and development of antibiotic-resistant strains of pathogenic bacteria. In the this review, 37 target antimicrobials were selected based ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • HPLC-MS/MS를 이용한 잔류항생제 분석 기술의 적용 과정에서 잔류 항생물질의 전처리 과정의 핵심적인 목표는 시료중의 분석대상 물질을 추출·농축시키고, 간섭물질을 제거하여 액체크로마토그래피(liquid chromatography)단계에 주입 가능한 형태로 시료를 처리하는 것이다.
  • 이러한 문제를 해결하기 위해 다양한 종의 항생물질을 동시에 분석 가능하도록 하는 효율적인 전처리 방법을 도출할 필요가 있으며 이를 위해서 각 항생제 계열에 따른 물리화학적인 특성에 대한 이해뿐만 아니라 전처리 과정에 대한 이해가 필요하다. 따라서 다음 절에서는 액체 시료를 대상으로, 선정된 항생제들에 대한 분석방법을 검토하였다. EPA method 1694를 대상 물질의 경우 제시된 방법을 우선 고려하였으며 비대상 물질들에 대해서는 문헌조사를 통해 분석 방법을 정리, 비교하였다.
  • 따라서 본 연구에서는 고체 시료 전처리 방법 연구에서 선정한 37종의 동물용 항생제를 대상으로 선정된 물질을 고성능 액체 크로마토그래피(high performance liquid chromatography)와 질량분석법(mass spectrometry)을 이용해 분석하기 위한 액체 시료의 전처리 과정을 조사하고 향후 가축분뇨 중 잔류항생물질에 대한 표준화된 분석 방법을 수립하기 위한 그룹별 특성을 비교하고자 한다.
  • (2012)의해 제안된 방법을 우선적으로 검토한 결과 특정 계열의 항생제를 분석하기 위한 전처리 방법으로 일부 유용하기는 하나 선정된 항생제를 모두 분석하는 것은 불가능한 것으로 나타났다. 따라서 액체시료에서 선정된 항생물질을 모두 추출할 수 있는 전처리 방법을 도출하고자 하였다.
  • 본 연구에서는 국내에서 판매된 축산용 항생제의 판매량을 조사하여 대상항목을 선정하고 액체시료에서 선정된 항생물질을 LC-MS/MS로 분석하기 위한 전처리 방법을 조사하였다. EPA 방법과 Shin et al.
  • 본 연구에서는 총설 I에서 선정된 37종의 축산용 항생물질에 대한 분석방법을 조사하고자 하였다. 대상물질을 선정하기 위하여 국내 가축용 항생제 판매순위를 조사하였고, 판매량은『2014년도 국가항생제 사용 및 내성 모니터링』(Lim et al.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
환경 중에 유입되는 의약물질은 어떤 방법으로 제거되는가? 그러나 환경 중에 유입되는 의약물질들은 기존 정수처리 기술인 응집-침전 공정으로는 제거가 어렵고(Adams et al., 2002; Kim and Carlson, 2007), 산화공정(오존, 염소, TiO2, UV/H2O2 등)(Adams et al., 2002; Petrovic et al., 2003)이나 생물학적 공정(Behera et al., 2011), 활성탄과 RO(Reverse Osmosis) 여과공정(Adams et al., 2002; Behera et al., 2011; Kim and Carlson, 2007) 등에 의해 일부 처리가 가능한 것으로 알려져 있다. 실제로 하수처리장 유입 유출수는 물론, 강, 지하수, 식수로 공급되는 정수처리장의 최종 처리수에서도 카페인(caffeine), 설파메톡사졸(sulfamethoxazole), 트리메소프림 (trimethoprim), 린코마이신(lincomycin), 이부프로펜(ibuprofen), 타일로신(tylosin) 등이 빈번하게 검출되고 있다(Table 1).
일반적으로 의약물질은 환경 중에 어떤 경로를 통해 유입되는가? 일반적으로 의약물질은 병원 및 가정에서 버려지는 폐수, 의약품 제조 공장에서 배출되는 산업폐수, 축산농가의 폐수, 가축분뇨의 퇴·액비 등을 통해 다양한 경로로 환경 중에 유입된다(Andersson and Hughes, 2014; Heberer, 2002). 점오염원으로 분류할 수 있는 병원과 가정, 공장의 하·폐수는 상대적으로 규제와 관리가 유용한 반면 산발적으로 흩어져 있는 중소규모의 가축사육을 통해 발생하는 동물 배설물의 퇴비화 비료 등은 추적 및 관리가 용이하지 않아 실태와 위험성에 대한 검증도 이루어지지 않은 경우가 대부분이다.
EPA method 1694는 총 74개의 의약물질을 어떻게 4개 그룹으로 나누는가? EPA method 1694는 총 74개의 의약물질을 4개 그룹으로 나누어 각 그룹별 분석방법을 제시하고 있다. 전처리를 수행하는 pH 조건(pH 2.0, pH 10.0)에 따라 두 그룹으로 구분되며 그 중 산성조건에서 전처리를 수행하는 그룹은 LC-MS 분석조건에 따라 다시 세 그룹으로 분류된다. 비교적 많은 연구가 진행된 베타-락탐계, 플로로퀴놀론계(fluoroquinolones), 매크로라이드계, 설폰아마이드계, 테트라사이클린계 등의 항생제가 포함되어 있으며 주로 Group 1과 2로 분류된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (92)

  1. Adams, C., Wang, Y., Lofin, K., and Meyer, M. (2002). Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Process, Journal of Environmental Engineering, 128(3), pp. 253-260. 

  2. Amelin, V. G. and Timofeev, A. A. (2016). Identification and Determination of Mycotoxins and Food Additives in Feed by HPLC-High-Resolution Time-of-Flight Mass Spectrometry, Journal of Analytical Chemistry, 71(4), pp. 401-417. 

  3. Andersson, D. I. and Hughes, D. (2014). Microbiological Effects of Sublethal Levels of Antibiotics, Nature Reviews Microbiology, 12(7), pp. 465-478. 

  4. Behera, S. K., Kim, H. W., Oh, J. E., and Park, H. S. (2011). Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea, Science of the Total Environment, 409(20), pp. 4351-4360. 

  5. Ben, W., Qiang, Z., Adams, C., Zhang, H., and Chen, L. (2008). Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-Phase Extraction and Liquid Chromatography-Mass Spectrometry, Journal of Chromatography A, 1202(2), pp. 173-180. 

  6. Berendsen, B. J., Gerritsen, H. W., Wegh, R. S., Lameris, S., van Sebille, R., Stolker, A. A., and Nielen, M. W. (2013). Comprehensive Analysis of ${\beta}$ -Lactam Antibiotics Including Penicillins, Cephalosporins, and Carbapenems in Poultry Muscle Using Liquid Chromatography Coupled to Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 405(24), pp. 7859-7874. 

  7. Biswal, B. K., Mazza, A., Masson, L., Gehr, R., and Frigon, D. (2014). Impact of Wastewater Treatment Processes on Antimicrobial Resistance Genes and Their Co-occurrence with Virulence Genes in Escherichia Coli, Water Research, 50, pp. 245-253. 

  8. Boleda, M. R., Alechaga, E., Moyano, E., Galceran, M. T., and Ventura, F. (2014). Survey of the Occurrence of Pharmaceuticals in Spanish Finished Drinking Waters, Environmental Science and Pollution Research, 21(18), pp. 10917- 10939. 

  9. Bonnet, R. (2004). Growing Group of Extended-Spectrum ${\beta}$ -Lactamases: the CTX-M Enzymes, Antimicrobial Agents and Chemotherapy, 48(1), pp. 1-14. 

  10. Boscher, A., Guignard, C., Pellet, T., Hoffmann, L., and Bohn, T. (2010). Development of a Multi-Class Method for the Quantification of Veterinary Drug Residues in Feedingstuffs by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1217(41), pp. 6394-6404. 

  11. Bousova, K., Senyuva, H., and Mittendorf, K. (2013). Quantitative Multi-Residue Method for Determination Antibiotics in Chicken Meat Using Turbulent Flow Chromatography Coupled to Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1274, pp. 19-27. 

  12. Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., and Fanelli, R. (2003). Strategic Survey of Therapeutic Drugs in the Rivers Po and Lambro in Northern Italy, Environmental Science and Technology, 37(7), pp. 1241-1248. 

  13. Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., and Zuccato, E. (2005). A Multiresidue Analytical Method Using Solid-Phase Extraction and High-Pressure Liquid Chromatography Tandem Mass Spectrometry to Measure Pharmaceuticals of Different Therapeutic Classes in Urban Wastewaters, Journal of Chromatography A, 1092(2), pp. 206-215. 

  14. Cha, J. M., Yang, S., and Carlson, K. H. (2006). Trace Determination of ${\beta}$ -Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry, Journal of Chromatography A, 1115(1), pp. 46-57. 

  15. Chander, Y., Oliveira, S., and Goyal S. M. (2011). Characterisation of Ceftiofur Resistance in Swine Bacterial Pathogens, The Veterinary Journal, 187(1), pp. 139-141. 

  16. Chen, H. and Zhang, M. (2013). Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China, Environmental Science & Technology, 47, pp. 8157-8163. 

  17. Chitescu, C. L., Kaklamanos, G., Nicolau, A. I., and Stolker, A. A. M. L. (2015). High Sensitive Multiresidue Analysis of Pharmaceuticals and Antifungals in Surface Water Using UHPLC-Q-Exactive Orbitrap HRMS. Application to the Danube River Basin on the Romanian Territory, Science of The Total Environment, 532, pp. 501-511. 

  18. Christian T., Schneider, R. J., Farber, H. A., Skutlarek, D., Meyer, M. T., and Goldbach, H. E. (2003). Determination of Antibiotic Residues in Manure, Soil, and Surface Waters, Acta Hydrochimica et Hydrobiologica, 31(1), pp. 36-44. 

  19. Dahmen, S., Mansour, W., Charfi, K., Boujaafar, N., Arlet, G., and Bouallegue, O. (2012). Imipenem Resistance in Klebsiella Pneumoniae is Associated to the Combination of Plasmid-Mediated CMY-4 AmpC ${\beta}$ -Lactamase and Loss of an Outer Membrane Protein, Microbial Drug Resistance, 18(5), pp. 479-483. 

  20. De Alwis, H. and Heller, D. H. (2010). Multiclass, Multiresidue Method for the Detection of Antibiotic Residues in Distillers Grains by Liquid Chromatography and Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1217(18), pp. 3046-3084. 

  21. Diaz-Cruz, M. S. and Barcelo, D. (2006). Determination of Antimicrobial Residues and Metabolites in the Aquatic Environment by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 386(4), pp. 973-985. 

  22. Dolliver, H., Gupta, S., and Noll, S. (2008). Antibiotic Degradation During Manure Composting, Journal of Environmental Quality, 37(3) pp. 1245-1253. 

  23. Donato, F. F., Kemmerich, M., Facco, J. F., Friggi, C. A., Prestes, O. D., Adaime, M. B., and Zanella, R. (2012). Simultaneous Determination of Pesticide and Antibiotic Residues at Trace Levels in Water Samples by SPE and LC-MS/MS, Brazilian Journal of Analytical Chemistry, 7, pp. 331-340. 

  24. Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A., Cole, L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G. B., Ismail, J., Jamieson, F., Maki, A., Pacagnella, A., and Pillai, D. R. (2010). Ceftiofur Resistance in Salmonella Enterica Serovar Heidelberg from Chicken Meat and Humans, Canada, Emerging Infectious Diseases, 16(1), pp. 48-54. 

  25. Evaggelopoulou, E. N. and Samanidou, V. F. (2013). Development and Validation of an HPLC Method for the Determination of Six Penicillin and Three Amphenicol Antibiotics in Gilthead Seabream (Sparus Aurata) Tissue According to the European Union Decision 2002/657/EC, Food Chemistry, 136(3), pp. 1322-1329. 

  26. Ewers, C., Grobbel, M., Stamm, I., Kopp, P. A., Diehl, I., Semmler, T., Fruth, A., Beutlich, J., Guerra, B., Wieler, L. H., and Guenther, S. (2010). Emergence of Human Pandemic O25:H4-ST131 CTX-M-15 Extended-Spectrum- ${\beta}$ -Lactamase-Producing Escherichia coli among Companion Animals, Journal of Antimicrobial Chemotherapy, 65(4), pp. 651-660. 

  27. Ischbach, M. A., and Walsh, C. T. (2009). Antibiotics for Emerging Pathogens, Science, 325(5944), pp. 1089-1093. 

  28. Fram, M. S. and Belitz, K. (2011). Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California, Science of the Total Environment, 409(18), pp. 3409-3417. 

  29. Franciolli, M., Bille, J., Glauser, M. P., and Moreillon P. (1991). ${\beta}$ -Lactam Resistance Mechanisms of Methicillin-Resistant Staphylococcus Aureus, The Journal of Infectious Diseases, 163(3), pp. 514-522. 

  30. Gao, P., Ding, Y., Li, H., and Xagoraraki, I. (2012). Occurrence of Pharmaceuticals in a Municipal Wastewater Treatment Plant: Mass Balance and Removal Processes, Chemosphere, 88(1), pp. 17-24. 

  31. Gorissen, B., Reyns, T., Devreese, M., De Backer, P., Van Loco, J., and Croubels, S. (2015). Determination of Selected Veterinary Antimicrobials in Poultry Excreta by UHPLC-MS/MS, for Application in Salmonella Control Programs, Analytical and Bioanalytical Chemistry, 407(15), pp. 4447-4457. 

  32. Gros, M., Petrovic, M., and Barcelo, D. (2006). Development of Multi-Residue Analytical Methodology Based on Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for Screening and Trace Level Determination of Pharmaceuticals in Surface and Wastewaters, Talanta, 70(4), pp. 678-690. 

  33. Gros, M., Rodriguze-Mozaz, S., and Barcelo, D. (2013). Rapid Analysis of Multiclass Antibiotic Residues and Some of Their Metabolites in Hospital, Urban Wastewater and River Water by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1292, pp. 173-188. 

  34. Hasman, H., Mevius, D., Veldman, K., Olesen, I., and Aarestrup, F. M. (2005). ${\beta}$ -Lactamases Among Extended-Spectrum ${\beta}$ -Lactamase (ESBL)-Resistant Salmonella from Poultry, Poultry Products and Human Patients in The Netherlands, Journal of Antimicrobial Chemotherapy, 56(1), pp. 115-121. 

  35. Hawkey, P. M. and Livemore, D. M. (2012). Carbapenem Antibiotics for Serious Infection, The BMJ, 344, pp. e3236. 

  36. Heberer, T. (2002). Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data, Toxicology Letters, 131(1-2), pp. 5-17. 

  37. Hong, Y., Sharma, V. K., Chiang, P. C., and Kim, H. (2015). Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry. Archives of Environmental Contamination and Toxicology, 69 (4), pp. 525-534. 

  38. Hur, J., Jawale, C., and Lee, J. H. (2012). Antimicrobial Resistance of Salmonella Isolated from Food Animals: A Review, Food Research International, 45(2), pp. 819-830. 

  39. Iglesias, A., Nebot, C., Miranda, J. M., Vazquez, B. I., and Cepeda, A. (2012). Detection and Quantitative Analysis of 21 Veterinary Drugs in River Water Using High-Pressure Liquid Chromatography Coupled to Tandem Mass Spectrometry, Environmental Science and Pollution Research, 19(8), pp. 3235-3249. 

  40. Jones, R. N. (2001). Resistance Patterns Among Nosocomial Pathogens: Trends Over the Past Few Years, Chest Journal, 119(2), pp. 397S-404S. 

  41. Karthikeyan, K. G. and Meyer, M. T. (2006). Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA, Science of the Total Environment, 361(1), pp. 196-207. 

  42. Kaufmann, A. and Maden, K. (2005). Determination of 11 Aminoglycosides in Meat and Liver by Liquid Chromatography with Tandem Mass Spectrometry, Journal of AOAC International, 88, pp. 1118-1125. 

  43. Kim, S. C. and Carlson, K. (2007). Quantification of Human and Veterinary Antibiotics in Water and Sediment Using SPE/LC/MS/MS, Analytical and Bioanalytical Chemistry, 387(4), pp. 1301-1315. 

  44. Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach. S., Cheung, P., and Whitehead, B. (2011). Pharmaceuticals, Hormones and Bisphenol A in Untreated Source and Finished Drinking Water in Ontario, Canada-Occurrence and Treatment Efficiency, Science of the Total Environment, 409(8), pp. 1481-1488. 

  45. Korea Ministry of Government Legislation. (2015). Act On The Management and Use of Livestock Excreta, 13526, Korea Ministry of Government Legislation. 

  46. Kroker, R. (1983). Aspekte zur Ausscheidung Antimikrobiell Wirksamer Substanzen nach der Chemotherapeutischen Behandlung von Nutztieren, Wiss Umwelt, 4, pp. 305-308. 

  47. Lim, S. K., Moon, D. C., Joo, I. S., Kim, Y. H., Jang, G. C., Lee, H. S., Lee, J. E., Jang, S. C., Gwak, H. S., Kim, H. Y., Kim, J. W., Jung, Y. G., Park, Y. J., Kim, S. R., Jung, S. K., and Jang, J. H. (2015). National Monitoring of Antibiotic Usage and Resistance in 2014: Livestock and Food of Animal Origin, 11-1543061-000142-01, Ministry of Agriculture and Ministry, Food and Rural Affairs, pp. 13-17. [Korean Literature] 

  48. Lindberg, R., Jamheimer, P. A., Olsen, B., Johanssen, M., and Tysklind, M. (2004). Determination of Antibiotic Substances in Hospital Sewage Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry and Group Analogue Internal Standards, Chemosphere, 57(10), pp. 1479-1488. 

  49. Liu, J. L. and Wong, M. H. (2013). Pharmaceuticals and Personal Care Products (PPCPs):A Review on Environmental Contamination in China, Environment International, 59, pp. 208-224. 

  50. Loffler, D. and Ternes, T. A. (2003), Analytical Method for the Determination of the Aminoglycoside Gentamicin in Hospital Wastewater via Liquid Chromatography-Electrospray-Tandem Mass Spectrometry, Journal of Chromatography A, 1000(1), pp. 583-588. 

  51. Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Vidal, J. L. M., and Frenich, A. G. (2012). Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry, Journal of Chromatography B, 895, pp. 39-47. 

  52. Lopez, B., Ollivier, P., Togola, A., Baran, N., and Ghestem, J. P. (2015). Screening of French Groundwater for Regulated and Emerging Contaminants, Science of The Total Environment, 518, pp. 562-573. 

  53. Leung, H. W., Jin, L., Wei, S., Tsui, M. M. P., Zhou, B., Jiao, L., Cheung, P. C., Chun, Y. K., Murphy, M. B., and Lam, P. K. S. (2013). Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China, Environmental Health Perspectives, 121(7), pp. 839-846. 

  54. Malchi, T., Maor, Y., Tadmor, G., Shenker, M., and Chefetz, B. (2014). Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks, Environmental Science & Technology, 48(16), pp. 9325-9333. 

  55. Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., and Gans, O. (2007). Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria, Environmental Pollution, 148(2), pp. 570-579. 

  56. Martinez-Villalba, A., Moyano, E., and Galceran, M. T. (2009). Fast Liquid Chromatography/Multiple-Stage Mass Spectrometry of Coccidiostats, Rapid Communications in Mass Spectrometry, 23(9), pp. 1255-1263. 

  57. McArdell, C. S., Molnar, E., Suter,M. J. F., and Giger, W. (2003). Occurrence and Fate o Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland, Environmental Science & Technology, 37(24), pp. 5479-5486. 

  58. Miao, X. S., Bishay, F., Chen, M., and Metcalfe, C. D. (2004). Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada, Environmental Science and Technology, 38(13), pp. 3533-3541. 

  59. Migliore, L., Civitareale, C., Cozzolino, S., Casoria, P., Brambilla, G., and Gaudio, L. (1998). Laboratory Models to Evaluate Phytotoxicity of Sulphadimethoxine on Terrestrial Plants, Chemosphere, 37(14), pp.2957-2961. 

  60. Migliore, L., Cozzolino, S., and Fiori, M. (2003). Phytotoxicity to and Uptake of Enrofloxacin in Crop Plants, Chemosphere, 52(7), pp.1233-1244. 

  61. Nebot, C., Iglesias, A., Regal, P., Miranda, J., Cepeda, A., and Fente, C. (2012). Development of a Multi-Class Method for the Identification and Quantification of Residues of Antibiotics, Coccidiostats and Corticoseteroids in Milk by Liquid Chromatography-Tandem Mass Spectrometry, International Dairy Journal, 22(1), pp. 78-85. 

  62. Neu, H. C. (1992). The Crisis in Antibiotic Resistance, Science, 257(5073), pp. 1064-1073. 

  63. Nordmann, P., Dortet, L., and Poirel, L. (2012). Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm!, Trends in molecular medicine, 18(5), pp. 263-272. 

  64. Oliver, S. P., Murinda, S. E., and Jayarao, B. M. (2011). Impact of Antibiotic Use in Adult Dairy Cows on Antimicrobial Resistance of Veterinary and Human Pathogens: A Comprehensive Review, Foodborne Pathogens and Disease, 8(3), pp. 337-355. 

  65. Persoons, D., Haesebrouck, F., Smet, A., Herman, L., Heyndrickx, M., Martel, A., Catry, B., Berge, A. C., Butaye, P., and Dewulf, J. (2011). Risk Factors for Ceftiofur Resistance in Escherichia Coli from Belgian Broilers, Epidemiology & Infection, 139(5), pp. 765-771. 

  66. Petrovic, M., Gonzalez, S., and Barcelo, D. (2003). Analysis and Removal of Emerging Contaminants in Wastewater and Drinking Water, TrAC Trends in Analytical Chemistry, 22(10), pp. 685-696. 

  67. Petrovic, M., Hemando, M. D., Diaz-Cruz, M. S., and Barcelo, D. (2005). Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Pharmaceutical Residues in Environmental Sample: a Review, Journal of Chromatography A, 1067(1-2), pp. 1-14. 

  68. Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to Cephalosporins and Carbapenems in Gram-Negative Bacterial Pathogens, International Journal of Medical Microbiology, 300 (6), pp. 371-379. 

  69. Pietruk, K., Olejink, M., Jedziniak, P., and Szprengier-Juszkiewicz, T. (2015). Determination of Fifteen Coccidiostats in Feed at Carry-Over Levels Using Liquid Chromatography-Mass Spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 112, pp. 50-59. 

  70. Pomati, F., Orlandi, C., Clerici, M., Luciani, F., and Zuccato, E. (2008). Effects and Interactions in an Environmentally Relevant Mixture of Pharmaceuticals, Toxicological Sciences, 102 (1), pp. 129-137. 

  71. Pozo, O. J., Guerrero, C., Sancho, J. V., Ibanez, M., Pitarch, E., Hogendoorn, E., and Hernandez, F. (2006). Efficient Approach for the Reliable Quantification and Confirmation of Antibiotics in Water Using On-Line Solid-Phase Extraction Liquid Chromatography/Tandem Mass Spectrometry, Journal of Chromatography A, 1103(1), pp. 83-93. 

  72. Rahman, M. F., Yanful, E. K., and Jasim, S. Y. (2009). Endocrine Disrupting Compounds(EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in the Aquatic Environment: Implications for the Drinking Water Industry and Global Environmental Health, Journal of Water and Health, 7(2), pp. 224-243. 

  73. Santiago-Rodriguez, T. M., Rivera, J. I., Coradin, M., and Toranzos, G. A. (2013). Antibiotic-resistance and Virulence Genes in Enterococcus Isolated from Tropical Recreational Waters, Journal of Water and Health, pp.387-396. 

  74. Sarmah, A. K., Meyer, M. T., and Boxall, A. B. A. (2006). A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment, Chemosphere, 65(5), pp. 725-759. 

  75. Schlusener, M. P., Con Arb, M. A., and Bester, K. (2006), Elimination of Macrolides Tiamulin and, Salinomycin During Manure Storage, Archives of Environmental Contamination and Toxicology, 51(1), pp. 21-28. 

  76. Seifrtova, M., Novakova, L., Lino, C., Pena, A., and Solich, P. (2009). An Overview of Analytical Methodologies for the Determination of Antibiotics in Environmental Waters, Analytica Chimica Acta, 649(2), pp. 158-179. 

  77. Shelver, W. L., Hakk, H., Larsen, G. L., DeSutter, T. M., and Casey, F. X. M. (2010). Development of an Ultra-High-Pressure Liquid Chromatography-Tandem Mass Spectrometry Multi-Residue Sulfonamide Method and Its Application to Water, Manure Slurry, and Soils from Swine Rearing Facilities, Journal of Chromatography A, 1217(8), pp. 1273-1282. 

  78. Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., and Kunikane, S. (2015). Occurrence of Selected Pharmaceuticals at Drinking Water Purification Plants in Japan and Implications for Human Health, Water Research, 76(1), pp. 187-200. 

  79. Shin, H. S., Kim, G. G., Shin, Y. J., Kim, H. J., Oh, J. A., Lim, H. H., Yang, E. Y., Cho, Y. H., Shin, J. H., Choi, Y. H., Kwon, E. H., Hong, S. Y., Park, J. M., and Yu, I. J. (2012). The Study on Analytical Methods for Pharmaceutical Residues and Their Occurrence(V), Kongju National University, pp. 21-49. 

  80. Sorensen, L. K. and Elbaek, T. H. (2004). Simultaneous Determination of Trimethoprim, Sulfadiazine, Florfenicol and Oxolinic Acid in Surface Water by Liquid Chromatography Tandem Mass Spectrometry, Chromatographia, 60(5-6), pp. 287-291. 

  81. Straus, S. K. and Hancock, R. E. (2006). Mode of Action of the New Antibiotic for Gram-Positive Pathogens Daptomycin: Comparison with Cationic Antimicrobial Peptides and Lipopeptides, Biochimica et Biophysica Acta(BBA)-Biomembranes, 1758(9), pp. 1215-1223. 

  82. Tao, Y., Chen, D., Yu, H., Huang, L., Liu, Z., Cao, X., Yan, C., Pan, Y., Liu, Z., and Yuan, Z. (2012). Simultaneous Determination of 15 Aminoglycoside (s) Residues in Animal Derived Foods by Automated Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Food Chemistry, 135 (2), pp. 676-683. 

  83. Thiele-Bruhn, S. (2003). Pharmaceutical Antibiotic Compounds in Soils - a Review, Journal of Plant Nutrition and Soil Science, 166(2), pp. 145-167. 

  84. Tolls, J. (2001). Sorption of Veterinary Pharmaceuticals in Soils: A Review, Environmental Science & Technology, 35(17), pp. 3397-3406. 

  85. United States Environmental Protection Agency (U. S. EPA.). (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS, EPA-821-R-08-002, U.S. Environmental Protection Agency. Washington, DC. 

  86. van Bruijnsvoort, M., Ottink, S. J., Jonker, K. M., and de Boer, E. (2004). Determination of Streptomycin and Dihydrostreptomycin in Milk and Honey by Liquid Chromatography with Tandem Mass Spectrometry, Journal of Chromatography A, 1058(1), pp. 137-142. 

  87. Wan, E. C. H., Ho, C., Sin, D. W. M., and Wong, Y. C. (2006). Detection of Residual Bacitracin A, Colistin A, and Colistin B in Milk and Animal Tissues by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 385(1), pp. 181-188. 

  88. Wegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M., and Bager, F. (1999). Use of Antimicrobial Growth Promoters in Food Animals and Enterococcus Faecium Resistance to Therapeutic Antimicrobial Drugs in Europe, Emerging Infectious Diseases, 5(3), pp. 329-335. 

  89. Wu, C., Huang, X., Witter, J. D., Spongberg, A. L., Wang, K., Wang, D., and Liu, J. (2014). Occurrence of Pharmaceuticals and Personal Care Products and Associated Environmental Risks in the Central and Lower Yangtze River, China, Ecotoxycology and Environmental Safety, 106, pp. 19-26. 

  90. Xu, Y., Tian, X., Ren, C., Huang, H., Zhang, X., Gong, X., Liu, H., Yu, Z., and Zhang, L. (2012). Analysis of Colistin A and B in Fishery Products by Ultra Performance Liquid Chromatography with Positive Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography B, 899, pp. 14-20. 

  91. Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q., Peng, F. Q., and Zhang, Q. Q. (2012). Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography A, 1244, pp. 123-138. 

  92. Zhu, W. X., Yang, J. Z., Wei, W., Liu, Y. F., and Zhang, S. S. (2008). Simultaneous Determination of 13 Aminoglycoside Residues in Foods of Animal Origin by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry with Two Consecutive Solid-Phase Extraction Steps, Journal of Chromatography A, 1207(1), pp. 29-37. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로