$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] PLS 회귀분석을 이용한 미래 육상 식생의 생산성 예측
Predicting Future Terrestrial Vegetation Productivity Using PLS Regression 원문보기

한국지리정보학회지 = Journal of the Korean Association of Geographic Information Studies, v.20 no.1, 2017년, pp.42 - 55  

최철현 (국립생태원 생태보전연구실) ,  박경훈 (창원대학교 환경공학과) ,  정성관 (경북대학교 조경학과)

초록
AI-Helper 아이콘AI-Helper

식생의 기후 적응력은 지역에 따른 상황 및 공간적 패턴이 다르게 나타나기 때문에 픽셀 스케일의 접근이 필요하다. 본 연구에서는 위성영상 기반 식생지수에 대해 PLS 회귀분석을 적용하여 식생의 생산성에 영향을 미치는 기후요인을 평가하고 남한지역의 미래 산림 생산성을 예측하였다. 그 결과, 최고강수분기의 평균기온(Bio8), 최저강수분기의 평균기온(Bio9), 최저강수월의 강수량(Bio14) 변수가 식생의 생산성에 높은 영향을 미치는 것으로 분석되었다. 미래 기후시나리오 자료를 이용하여 예측된 2050년의 식생 생산성은 전체적으로 감소하는 것으로 나타났으며, 특히 고지대에서 크게 감소하는 것으로 분석되었다. 이러한 결과는 기후에 민감한 지역의 식생에 대한 생산성 모니터링과 미래 기후변화로 인한 산림 탄소 저장량의 변화를 평가하는데 있어 유용하게 활용될 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Since the phases and patterns of the climate adaptability of vegetation can greatly differ from region to region, an intensive pixel scale approach is required. In this study, Partial Least Squares (PLS) regression on satellite image-based vegetation index is conducted for to assess the effect of cl...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Since the phases and patterns of the climate adaptability of vegetation may greatly differ from region to region, an intensive pixel scale approach is required. In this study, a satellite-based vegetation index and 19 bioclimatic variables were used to evaluate the climatic sensitivity of vegetation at the pixel scale, and importance of bioclimatic variables on vegetation productivity were analyzed. The results indicate that Bio8, Bio9 and Bio14 variables showed high influence on the EVI of the entire forest area.
  • In this study, major climate factors influencing vegetation productivity are determined using MODIS vegetation index and climate data. Furthermore, we predicted future productivity in order to identify areas vulnerable to climate change.
  • In this study, the MODIS EVI(MOD13Q1) data were used to evaluate the vegetation productivity. MOD13Q1 data are provided every 16 days at 250m spatial resolution.

대상 데이터

  • , 2015). The DEM data was obtained from the 30m-resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model Version 2(GDEM V2) provided by the NASA. The analysis was conducted using the 'spgwr' package of R(Team, 2013; Bivand et al.
  • The spatial scope of the study is South Korea, located in middle-latitudes with a temperate climate zone and four distinctive seasons. South Korea has a small land area, but its complex geography, seasonal changes and many different types of biomes make the climatic influence quite different from region to region.

이론/모형

  • When a regression coefficients was derived by the PLS regression analysis, future EVI can be estimated using future bioclimatic variables. In this study, future bioclimatic variables in 2050 of the RCP 8.5 scenario(HadGEM2-AO) provided by Worldclim-Global Climate Data(www.worldclim.org) were used. The PLS regression analysis was conducted for each pixel in order to consider differences of the climatic sensitivity for the each biome types and regions.
  • Generally, the spatial interpolation of temperature is invariably influenced by elevation(DeGaetano and Belcher, 2007). To consider variations of temperature by elevation and local topographic differences, the Geographically Weighted Regression (GWR) method was used in this study. GWR sets the elevation derived from the Digital Elevation Model (DEM) as the independent variable, and the monthly maximum temperature and monthly minimum temperature in the AWS records as the dependent variable.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. Austin, M.P., A.O. Nicholls, and C.R. Margules. 1990. Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological monographs 60(2):161-177. 

  2. Barker, T., O. Davidson, W. Davidson, S. Huq, D. Karoly, V. Kattsov, j. Liu, U. Lohmann, M. Manning, and T. Matsuno. 2007. Climate change 2007: Synthesis report. Valencia, IPPC. p.30. 

  3. Bivand, R., D. Yu, T. Nakaya, M.-A. Garcia-Lopez, and M.R. Bivand. 2015. Package 'spgwr'. R package. 

  4. Bowman, D.M., G.J. Williamson, R.J. Keenan, and Prior, L. D. 2014. A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from Australian temperate and subtropical eucalypt forests. Global ecology and biogeography 23(8): 925-934. 

  5. Bryant, J.P., F.S. Chapin III, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983: 357-368. 

  6. Chang, M. 2012. Forest hydrology: an introduction to water and forests, Third Edition. CRC press. p.403. 

  7. Choi, C.H. and S.G. Jung. 2014. Analysis of the MODIS-based vegetation phenology using the HANTS algorithm. Journal of the Korean Association of Geographic Information Studies 17(3):20-38 (최철현, 정성관. 2014. HANTS 알고리즘을 이용한 MODIS 영상기반의 식물계절 분석. 한국지리정보학회지 17(3):20-38). 

  8. Choi, C.H., S.G. Jung, and K.H. Park. 2016. Analyzing relationship between satellite-based plant phenology and temperature. Journal of the Korean Association of Geographic Information Studies 19(1):30-42 (최철현, 정성관, 박경훈. 2016. 위성영상을 기반으로 도출된 식물계절과 기온요인과의 상관관계 분석. 한국 지리정보학회지 19(1):30-42). 

  9. Cramer, R.D., J.D. Bunce, D.E. Patterson, and I.E. Frank. 1988. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional qsar studies. Quantitative Structure-Activity Relationships 7(1):18 -25. 

  10. D'arrigo, R., C. Malmstrom, G. Jacoby, S. Los, and D. Bunker. 2000. Correlation between maximum latewood density of annual tree rings and ndvi based estimates of forest productivity. International Journal of Remote Sensing 21(11):2329-2336. 

  11. DeGaetano, A.T. and B.N. Belcher. 2007. Spatial interpolation of daily maximum and minimum air temperature based on meteorological model analyses and independent observations. Journal of Applied Meteorology and Climatology 46(11): 1981-1992. 

  12. Fotheringham, A.S., C. Brunsdon, and M. Charlton. 2003. Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. p.212. 

  13. Ha, R., H.J. Shin, S.J. Kim. 2007. Proposal of prediction technique for future vegetation information by climate change using satellite image. Journal of the Korean Association of Geographic Information Studies 10(3):58-69 (하림, 신형진, 김성준. 2007. 위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안. 한국지리정보학회지 10(3):58-69). 

  14. He, J. and X. Shao. 2006. Relationships between tree-ring width index and ndvi of grassland in delingha. Chinese Science Bulletin 51(9):1106-1114. 

  15. Henttonen, H. 1984. The dependence of annual ring indices on some climatic factors. Acta Forestalia Fennica 186: 1-38. 

  16. Hijmans, R.J., J. van Etten, J. Cheng, M. Mattiuzzi, M. Sumner, J.A. Greenberg, O.P. Lamigueiro, A. Bevan, E.B. Racine, and A. Shortridge. 2015. Package 'raster'. R package. 

  17. Hijmans, R.J., S. Phillips, J. Leathwick, J. Elith, and M.R.J. Hijmans. 2016. Package 'dismo'. R package. 

  18. Kalela-Brundin, M. 1999. Climatic information from tree-rings of pinus sylvestris l. And a reconstruction of summer temperatures back to ad 1500 in femundsmarka, eastern norway, using partial least squares regression(PLS) analysis. The Holocene 9(1):59-77. 

  19. Le Cao, K.-A., I. Gonzalez, S. Dejean, F. Rohart, B. Gautier, P. Monget, J. Coquery, F. Yao and B. Liquet. 2015. Package 'mixomics'. R package. 

  20. Lopatin, E., T. Kolstrom, and H. Spiecker. 2006. Determination of forest growth trends in komi republic (northwestern russia): Combination of tree-ring analysis and remote sensing data. Boreal Environment Research 11(5):341. 

  21. Luedeling, E. and A. Gassner. 2012. Partial least squares regression for analyzing walnut phenology in california. Agricultural and Forest Meteorology 158:43-52. 

  22. McDowell, N., W.T. Pockman, C.D. Allen, D.D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West, and D.G. Williams. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New phytologist 178(4):719-739. 

  23. Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363(6426):234-240. 

  24. Miao, L., P. Ye, B. He, L. Chen, and X. Cui. 2015. Future climate impact on the desertification in the dry land asia using AVHRR GIMMS NDVI3g data. Remote Sensing 7(4):3863-3877. 

  25. O'Donnell, M.S., and D. A. Ignizio. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series 691:10. 

  26. Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering. 1973. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the 3rd ERTS Symposium 1:48-62. 

  27. Smillie, R.M., S.E. Hetherington, C. Ochoa and P. Malagamba. 1983. Tolerances of wild potato species from different altitudes to cold and heat. Planta 159(2): 112-118. 

  28. Team, R.C. 2013. R: A language and environment for statistical computing. 

  29. Thammincha, S. 1981. Climatic variation in radial growth of scots pine and norway spruce and its importance in growth estimation. Acta Forestalia Fennica 171: 1-57. 

  30. Turner, M.G., R.H. Gardner, and R.V. O'neill. 2001. Landscape ecology in theory and practice. Springer, New York. p.482. 

  31. Valcu, C.M., C. Lalanne, C. Plomion, and K. Schlink. 2008. Heat induced changes in protein expression profiles of Norway spruce(Picea abies) ecotypes from different elevations. Proteomics 8(20): 4287-4302. 

  32. Wang, J., P. Rich, K.P. Price, and W.D. Kettle. 2004. Relations between ndvi and tree productivity in the central great plains. International Journal of Remote Sensing 25(16):3127-3138. 

  33. Wold, S., M. Sjostrom, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and intelligent laboratory systems 58(2):109-130. 

  34. Yang, X., X. Xie, D.L. Liu, F. Ji, and L. Wang. 2015. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Advances in Meteorology 2015:1-12. 

  35. Yu, H., J. Xu, E. Okuto, and E. Luedeling. 2012. Seasonal response of grasslands to climate change on the tibetan plateau. PLoS One 7(11):e49230. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로