$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

학업성취도 예측 요인 분석 및 인공지능 예측 모델 개발 - 블렌디드 수학 수업을 중심으로
Analysis of achievement predictive factors and predictive AI model development - Focused on blended math classes 원문보기

Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, v.61 no.2, 2022년, pp.257 - 271  

안도연 (천안청당초등학교) ,  이광호 (한국교원대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구는 학습분석학을 기반으로 블렌디드 수학 수업에서 발생하는 학습 데이터를 활용하여 수학 학업성취도를 예측하는 요인이 무엇인지 탐색하고, 그 결과를 활용하여 수학 학업성취도를 예측하는 인공지능 모델을 개발하고자 하였다. 초등학교 5~6학년 학생 205명의 수학 학습 성향, LMS 데이터, 평가 결과를 수집하여 랜덤포레스트 모델을 분석하였다. 수학 학습성향에는 수학학습 자신감, 수학불안, 수학교과 흥미, 수학학습 자기관리, 수학학습 전략이 포함되었다. LMS 데이터로 e학습터의 진도율, 학습 횟수, 학습 시간을 수집하였다. 평가는 진단평가와 각 단원의 단원평가 결과를 사용하였다. 분석 결과 수학 학습성향 중 수학 학습 전략이 저성취 학생을 예측에 가장 중요한 요인으로 나타났다. LMS 학습 데이터는 예측에 미미한 영향을 주었다. 본 연구는 인공지능 모델이 블렌디드 수학 수업에서 발생하는 학습 데이터로 저성취 학생을 예측할 수 있음을 시사한다. 또한 분석 결과를 통해 교사가 학생을 평가하고 피드백하는 데 구체적인 정보를 제공하여 교사의 평가 활동에 보조적인 역할을 할 수 있을 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

As information and communication technologies are being developed so rapidly, education research is actively conducted to provide optimal learning for each student using big data and artificial intelligence technology. In this study, using the mathematics learning data of elementary school 5th to 6t...

주제어

표/그림 (12)

참고문헌 (42)

  1. Ahn, M. L., Choi, Y. Y., Bae, Y. H., & Kim, M. H. (2016). A Literature Review on Learning Analytics: Exploratory study of empirical researches utilizing log data in Korea. Journal of Educational Technology, 32(2), 253-291. https://doi.org/10.17232/KSET.32.2.253 

  2. Alharbi, S., & Drew, S. (2014). Using the technology acceptance model in understanding academics' behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155. https://doi.org/10.14569/IJACSA.2014.050120 

  3. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0488-0 

  4. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press. 

  5. Breiman, L. (1996). Bagging predictors. Machine Learning. 24(2), 123-140. https://doi.org/10.1007/BF00058655 

  6. Breiman, L. (2001). Random Forests. Machine Learning. 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 

  7. Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., & Van, E. P. (2005). Identifying SNPs predictive of phenotype using random forests. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society, 28(2), 171-182. https://doi.org/10.1002/gepi.20041 

  8. Charles, R. I., & Lester, F. K. (1984). An evaluation of a process-oriented instructional program in mathematical problem solving in grades 5 and 7. Journal for Research in Mathematics Education, 15(1), 15-34. https://doi.org/10.5951/jresematheduc.15.1.0015 

  9. Dani, A. (2016). Students' patterns of interaction with a mathematics intelligent tutor: Learning analytics application. arXiv preprint arXiv:1607.07284. https://doi.org/10.5121/ijite.2016.5201 

  10. Elias, T. (2011). Learning analytics: Definitions, process and potential. Learning, 23. 

  11. Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451 

  12. Hong, H. J. (2017). The Effect of Self Efficacy and Self-Regulated Learning on Learning Persistence in Blended Learning Based Basic Mathematics Class. Journal of Educational Technology, 20(6), 3-11. https://doi.org/10.18108/jeer.2017.20.6.3 

  13. Jo, I. H. (2012). Proposal of LAPA (Learning Analytics for Prediction & Action) model. Review of Korean Society of Management Information System Research Seminar 2012, Seoul. 

  14. Jo, I. H. (2015). Learning analysis department, learning design, and development of its convergence topography. Review of Conference of Korean Society of Educational Technology, 2015(2), 422-434. 

  15. Jo, I. H., Park, Y. J., & KIM, J. H. (2019). Understanding Learning Analytics. Park Young Story 

  16. Jo, I., Park, Y., Yoon, M., & Sung, H. (2016). Evaluation of Online log variables that estimate learner's time management in a Korean online learning context. The International Review of Research in Open and Distributed Learning, 17(1), 195-213. https://doi.org/10.19173/irrodl.v17i1.2176 

  17. Jo, Y. S. (2014). Potential and Prospects of Learning Analytics Technology Utilization. Information and Communications Magazine, 31(12), 73-80. 

  18. Jordan, M. M., & Duckett, N. D. (2018). Universities Confront 'Tech Disruption': Perceptions of Student Engagement Online Using Two Learning Management Systems. The Journal of Public and Professional Sociology, 10(1), 4. 

  19. Kakasevski, G., Mihajlov, M., Arsenovski, S., & Chungurski, S. (2008, June). Evaluating usability in learning management system Moodle. In Iti 2008-30th international conference on information technology interfaces(pp.613-618). IEEE. https://doi.org/10.1109/ITI.2008.4588480 

  20. Ko, H. K., Yang, K. S., & Lee, H. Y. (2015). Development of the Diagnostic Worksheet for Mathematics Academic Counseling. Communications of Mathematical Education, 29(4), 723-743. https://doi.org/10.7468/jksmee.2015.29.4.723 

  21. Kim, A. N. (2021). Analysis of Learner Behavior and Learning Performance using LMS Big Data in the COVID-19: Focused on J-University. Korean Association For Learner-Centered Curriculum And Instruction, 21(6), 565-579. https://doi.org/10.22251/jlcci.2021.21.8.565 

  22. Kim, H. K. (2020). Meta analysis on the improvement of academic performance by the teaching method for underachievers of learning mathematics. The Mathematical Education, 59(1), 31-45. https://doi.org/10.7468/mathedu.2020.59.1.31 

  23. Lang, L., & Pirani. J, A. (2014). The Learning Management System Evolution. Research bulletin. Louisville, CO: ECAR, May 20, 2014. 

  24. Lim, J. H. (2009). A Study on the Design Strategies of Teaching and Learning Model for Mobile Learning, The Journal of Korean Educational Practice, 8(1), 101-124. 

  25. McMillan, J. H. (2014). Classroom Assessment: Principles and Practice for Effective Standards-Based Instruction, 6th Edition. Pearson. 

  26. Ministry of Education (2020, May 26). Science, Mathematics, Information, Convergence Education Comprehensive Plan ('20~'24). Ministry of Education. https://www.moe.go.kr/boardCnts/viewRenew.do?boardID294&lev0&statusYNW&smoe&m020402&opTypeN&boardSeq80718 

  27. Montebello, M. (2021, August). Personalized Learning Environments. In 2021 International Symposium on Educational Technology (ISET) (pp. 134-138). IEEE. https://doi.org/10.1109/ISET52350.2021.00036 

  28. Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands. 

  29. Murshitha, S. M. (2013). The effect of lecturers' performance on students' LMS adoption. In Proceedings of the Third International Symposium 2013, 19-24. 

  30. Nagy, J. (2016). Using learning management systems in business and economics studies in Hungarian higher education. Education and Information Technologies, 21(4), 897-917. 

  31. Nichols, M. (2003). A theory for eLearning. Journal of Educational Technology & Society, 6(2), 1-10. 

  32. Oviatt, S. (2013, December). Problem solving, domain expertise and learning: Ground-truth performance results for math data corpus. In Proceedings of the 15th ACM on International conference on multimodal interaction (pp. 569-574). https://doi.org/10.1145/2522848.2533791 

  33. Park, H. S. (2019). Do it! Introduction to deep learning that you can learn coding honestly. Easyspublishing. 

  34. Park, M., Lim H., Kim, J. Y., Lee, K. H., & Kim, M. (2020). The effects on the personalized learning platform with machine learning recommendation modules: Focused on learning time, self-directed learning ability, attitudes toward mathematics, and mathematics achievement. The Mathematical Education, 59(4), 373-387. https://doi.org/10.7468/mathedu.2020.59.4.373 

  35. Romero, C., & Ventura, S. (2006). Data mining in e-learning(Vol. 4). Wit Press. https://doi.org/10.2495/1-84564-152-3 

  36. Schoenfeld, A. H. (1985). Making sense of "out loud" problem-solving protocols. The Journal of Mathematical Behavior, 4(2), 171-191. 

  37. Shin, S. B., & Cho, H. J. (2021). Correlated variable importance for random forests. The Korean Journal of Applied Statistics, 34(2), 177-190. 

  38. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE review, 46(5), 30. 

  39. Tempelaar, D. T., Heck, A., Cuypers, H., Kooij H., & Vrie. E. (2013, April). Formative assessment and learning analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge. Association for Computing Machinery, USA, 205-209. https://doi.org/10.1145/2460296.2460337 

  40. Tempelaar, D. T., Rienties, B., & Giesbers, B. (2014). Computer assisted, formative assessment and dispositional Learning Analytics in learning mathematics and statistics. Communications in Computer and Information Science, 439, 67-78. https://doi.org/10.1007/978-3-319-08657-6_7 

  41. Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013, April). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In Proceedings of the third international conference on learning analytics and knowledge. Association for Computing Machinery, USA, 145-149. https://doi.org/10.1145/2460296.2460324 

  42. Qi, Y. (2012). Random forest for bioinformatics. In Zhang, C., Ma, Y. (eds) Ensemble Machine Learning (pp. 307-323). Springer. https://doi.org/10.1007/978-1-4419-9326-7_11 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로