$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이식수목의 현황 평가를 위한 위성영상 기반 원격탐사 식생지수 적용 연구
Application of satellite remote sensing-based vegetation index for evaluation of transplanted tree status 원문보기

환경생물 = Korean journal of environmental biology, v.41 no.1, 2023년, pp.18 - 30  

최미나 (국립생태원 환경영향평가팀) ,  이도훈 (국립생태원 환경영향평가팀) ,  장문정 (국립생태원 환경영향평가팀) ,  김동주 (국립생태원 환경영향평가팀) ,  이선미 (국립생태원 환경영향평가팀) ,  문윤정 (국립생태원 환경영향평가팀) ,  권용성 (국립생태원 환경영향평가팀)

초록
AI-Helper 아이콘AI-Helper

우리나라는 산림이 64%에 이르기 때문에 개발사업에 의한 산림훼손이 불가피하다. 이에 대한 방안으로 환경영향평가 제도에서는 훼손되는 수목량의 10%를 재활용 및 이식하도록 하고 있다. 그러나 환경적 요건이 고려되지 않아 이식성공률이 저조하고 가이식장 운영이 잘 되지 않아 수목이 고사하는 등 문제가 지속적으로 발생하고 있다. 이러한 실태를 파악하기 위해서는 현장조사가 필수적이나 시간 및 공간적 한계가 존재한다. 본 연구에서는 원격탐사 기반의 식생지수를 적용하여 개발사업으로 인해 발생하는 이식수목 현황의 시계열적 변화를 탐지하고 원격탐사의 적용성 평가를 목적으로 한다. 이를 위해 위성영상을 분석하여 가이식장 면적을 구축하고 이식 전, 후 식생지수의 시계열 변화를 분석하여 식생 상태를 도출하였다. 연구 결과는 현장조사를 통한 이식수목의 고사율 및 활력도와 위성영상 기반으로 한 가이식 전 후의 식생지수 변화 분석의 결과가 유사한 경향성을 나타내었다. 이에 따라 가이식장에 수목 이식 후에는 가이식장 범위의 녹색 식물의 상대적 분포량과 활동성이 증가하고 시간이 지남에 따라 수목 고사 및 활력도 감소로 인해 낮아지는 것을 규명하였다. 본 연구를 통해 위성영상에 기반한 이식수목 평가 방법을 제시하였으나, 실제 평가에 적용하기 위해서는 보다 정량적인 방법론을 개발할 필요가 있을 것으로 사료된다. 본 연구는 원격탐사 기법인 위성영상과 식생지수를 활용하여 보다 전국에 분포한 이식수목의 변화를 탐지하여, 개발사업으로 인해 시행되는 환경영향평가 제도의 수목 이식이 제대로 수행되고 산림 파괴에 효과적인 저감 대책을 마련하는 데 기여할 수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Forest destruction is an inevitable result of the development processes. According to the environmental impact assessment, over 10% of the destroyed trees need to be recycled and transplanted to minimize the impact of forest destruction. However, the rate of successful transplantation is low, leadin...

주제어

참고문헌 (63)

  1. American Association of Nurserymen. 1996. American Standards for Nursery Stock. ANSI Z60.1-1996. Amer. Assn. of?Nurserymen. Washington, D.C. 

  2. Anand A, SK Singh and S Kanga. 2018. Estimating the change?in forest cover density and predicting NDVI for west Singhbhum using linear regression. Int. J. Environ. Rehabil. Conserv. 9:193-203. https://doi.org/10.31786/09756272.18.9.1.125 

  3. Bae SH and SD Lee. 2019. A study on the timing of management through comparison of growth rate by year of tree in the ecological restoration site - Focused on the deciduous?tree. pp. 85-86. In: Proceedings of the Korean Society of?Environment and Ecology Conference. Korean Society of?Environment and Ecology Conference. Korean Society of 

  4. Ban YU, KS Joo, HK Jeong and GH Hwang. 2010. Improvement?of EIS documentation & consultation process through expert?survey method. J. Environ. Impact Assess. 19:141-151. 

  5. Bannari A, D Morin, F Bonn and A Huete. 1995. A review of vegetation indices. Remote Sens. Rev. 13:95-120. https://doi.org/10.1080/02757259509532298 

  6. Brantley ST, JC Zinnert and DR Young. 2011. Application of hyperspectral vegetation indices to detect variations in high leaf?area index temperate shrub thicket canopies. Remote Sens.?Environ. 115:514-523. https://doi.org/10.1016/j.rse.2010.09.020 

  7. Campbell MJ, PE Dennison, JW Tune, SA Kannenberg, KL?kerr, BF Codding and WR Anderegg. 2020. A multi-sensor,?multi-scale approach to mapping tree mortality in woodland?ecosystems. Remote Sens. Environ. 245:111853. https://doi.org/10.1016/j.rse.2020.111853 

  8. Cho HR, SB Kim and D Oh. 2009. Cost effectiveness depending?on the native tree treatment methods. J. Korean Env. Res.?Tech. 12:51-62. 

  9. Cho KJ, JG Choi, YM Park, YI Song, H Sagong, SB Lee, JC Jung?and YS Im. 2008. Achievement and Development of EIA?Over the Last 30 Years. KEI Research Report. RE-12. Korea?Environment Institute. Sejong, Korea. 

  10. Cho NW. 2020. An empirical study on the institutional change?of environmental impact assessment: Focused on agreed?terms. Ph.D. Dissertation. Yonsei University. Seoul. Korea. p. 172. 

  11. Drusch M, U del Bello, S Carlier, O Colin, V Fernandez, F Gascon,?B Hoersch, C Isola, P Laverinti, P Martimort, A Meygret, F?Spoto, O Sy, F Marchese and P Bargellini. 2012. Sentinel-2:?ESA's optical high-resolution mission for GMES operational?services. Remote Sens. Environ. 120:25-36. https://doi.org/10.1016/j.rse.2011.11.026 

  12. Furniss TJ, VR Kane, AJ Larson and JA Lutz. 2020. Detecting tree?mortality with Landsat-derived spectral indices: Improving?ecological accuracy by examining uncertainty. Remote Sens.?Environ. 237:111497. https://doi.org/10.1016/j.rse.2019.111497 

  13. Gilman EF. 1989. Plant form in relation to root spread. J. Environ.?Hort. 7:88-90. https://doi.org/10.24266/0738-2898-7.3.88 

  14. Gilman EF. 1990. Tree root growth and development. II. Response to culture, management and planting. J. Environ. Hort.?8:220-227. https://doi.org/10.24266/0738-2898-8.4.220 

  15. Gilman EF and ME Kane. 1991. Growth dynamics following planting of cultivars of Juniperus chinensis. J. Am. Soc. Hortic. Sci.?116:637-641. https://doi.org/10.21273/JASHS.116.4.637 

  16. Gilman EF, RJ Black and B Dehgan. 1998. Irrigation volume and?frequency and tree size affect establishment rate. J. Arboric.?24:1-9. 

  17. Gitelson AA, YJ Kaufman and MN Merzlyak. 1996. Use of a?green channel in remote sensing of global vegetation from?EOS-MODIS. Remote Sens. Environ. 58:289-298. https://doi.org/10.1016/S0034-4257(96)00072-7 

  18. Gutierrez-Rodriguez M, JA Escalante-Estrada, MT Rodriguez?Gonzalez and MP Reynolds. 2006. Canopy reflectance indices and its relationship with yield in common bean plants?(Phaseolus vulgaris L.) with phosphorous supply. Int. J. Agric.?Biol. 8:203-207. 

  19. Hansen MC, YE Shimabukuro, P Potapov and K Pittman. 2008.?Comparing annual MODIS and PRODES forest cover change?data for advancing monitoring of Brazilian forest cover. Remote?Sens. Environ. 112:3784-3793. https://doi.org/10.1016/j.rse.2008.05.012 

  20. Hati JP, S Goswami, S Samanta, N Pramanick, SD Majumdar, NR?Chaube, A Misra and S Hazra. 2021. Estimation of vegetation?stress in the mangrove forest using AVIRIS-NG airborne?hyperspectral data. Model Earth Syst. Environ. 7:1877-1889.?https://doi.org/10.1007/s40808-020-00916-5 

  21. Hawrylo P, B Bednarz, P Wezyk and M Szostak. 2018. Estimating defoliation of Scots pine stands using machine learning?methods and vegetation indices of Sentinel-2. Eur. J. Remote?Sens. 51:194-204. https://doi.org/10.1080/22797254.2017.1417745 

  22. Huete A, K Didan and WV Leeuwen. 1999. MODIS Vegetation?Index (MOD13). Algorithm Theoretical Basis Document Version 3.1. University of Arizona. Tucson, AZ. 

  23. Huete A, K Didan, WV Leeuwen, T Miura and E Glenn. 2010.?MODIS vegetation indices. pp. 579-602. In: Land Remote?Sensing and Global Environmental Change: NASA's Earth?Observing System and the Science of ASTER and MODIS.?Springer. New York. 

  24. Huete AR. 1988. A soil-adjusted vegetation index(SAVI). Remote?Sens. Environ. 25:295-309. https://doi.org/10.1016/0034-4257(88)90106-X 

  25. Huete AR. 2012. Vegetation indices, remote sensing and forest?monitoring. Geogr. Compass 6:513-532. https://doi.org/10.1111/j.1749-8198.2012.00507.x 

  26. Jamal M and S Mandal. 2016. Monitoring forest dynamics and?landslide susceptibility in Mechi-Balason interfluves of Darjiling Himalaya, West Bengal using forest canopy density model?(FCDM) and Landslide Susceptibility Index model (LSIM).?Model Earth Syst. Environ. 2:1-17. https://doi.org/10.1007/s40808-016-0243-2 

  27. Jeong MH, SG Jeong, CG Jang and JY Sin. 2015. Analysis of?tree vitality according to root state of transplanted trees. pp. 127-128. In: Proceedings of the Korean Institute of Landscape Architecture Conference. Korean Institute of Landscape Architecture Conference. 

  28. Jiang Z, AR Huete, J Chen, Y Chen, J Li, G Yan and X Zhang. 2006.?Analysis of NDVI and scaled difference vegetation index?retrievals of vegetation fraction. Remote Sens. Environ. 101:?366-378. https://doi.org/10.1016/j.rse.2006.01.003 

  29. Kerr JT and M Ostrovsky. 2003. From space to species: ecological applications for remote sensing. Trends. Ecol. Evol.?18:299-305. https://doi.org/10.1016/S0169-5347(03)00071-5 

  30. Kim CS and ZS Kim. 2012. Effects of cutting time, auxin treatment, and cutting position on rooting of the green-wood?cuttings and growth characteristics of transplanted cuttings?in the adult Prunus yedoensis. Hortic. Sci. Technol. 30:129-136. https://doi.org/10.7235/hort.2012.11041 

  31. Kim OK. 2005. The transplantation method of natural vegetation?community in development area-A case study of Yong-In?Dongbaek District. Department of Landscape Architecture,?Graduate School of Urban Science, University of Seoul.?Seoul. p.167. 

  32. Knipling EB. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.?Remote Sens. Environ. 1:155-159. https://doi.org/10.1016/S0034-4257(70)80021-9 

  33. Korea Environment Institute. 2017. Review and Writing Manual?for Environmental Impact Statement. (Ver.2.0). Korea Environment Institute. Sejong, Korea. p. 21. 

  34. Korea Land Development Corporation. 1994. The Study of Utilizing Wild Plants in Land Development District - Focused on?New Town (Bundang and Ilsan). Korea Land Development?Corporation Report. Korea Land Development Corporation. p. 113. 

  35. Kureel N, J Sarup, S Matin, S Goswami and K Kureel. 2022.?Modelling vegetation health and stress using hypersepctral?remote sensing data. Model Earth Syst. Environ. 8:733-748.?https://doi.org/10.1007/s40808-021-01113-8 

  36. Langley SK, HM Cheshire and KS Humes. 2001. A comparison of?single date and multitemporal satellite image classifications?in a semi-arid grassland. J. Arid Environ. 49:401-411. https://doi.org/10.1006/jare.2000.0771 

  37. Lee GS and YW Choi. 2019. Analysis of cropland spectral properties and vegetation index using UAV. J. Korean Assoc.?Geogr. Inf. Stud. 22:86-101. https://doi.org/10.11108/kagis.2019.22.4.086 

  38. Lee SC, BY Jo and SH Choi. 2015. A study of establishment?ratio of native tree transplant. J. Korean Inst. Landsc. Archit.?43:23-29. https://doi.org/10.9715/KILA.2015.43.2.023 

  39. Lee SD and HK Kang. 2012. Transplantation method of damage?ecosystem associated with development of the borrow pits.?Korean J. Environ. Ecol. 26:394-405. 

  40. Lee SM, BJ Kim, DH Lee, MH Jang, JK Kim, HR Kim, SH Woo,?SH Yoo, TH Lee, YJ Moon, SW Park and SH Kim. 2020. Operational Improvement of Temporary Transplant Site in Environmental Impact Assessment(I). National Institute of Ecology.?Seocheon, Korea. 

  41. Lee SM, BJ Kim, DH Lee, MH Jang, JK Kim, HR Kim, SH Woo,?SH Yoo, TH Lee, YJ Moon, SW Park and SH Kim. 2021. Operational improvement of temporary transplant site in Environmental Impact Assessment(II). National Institute of Ecology.?Seocheon, Korea. 

  42. Lees T, G Tseng, C Atzberger, S Reece and S Dadson. 2022. Deep?learning for vegetation health forecasting: A case study in?Kenya. Remote Sens. 14:698. https://doi.org/10.3390/rs14030698 

  43. Li J and B Chen. 2020. Global revisit interval analysis of Landsat-8-9 and Sentinel-2a-2b data for terrestrial monitoring.?Sensors 20:6631. https://doi.org/10.3390/s20226631 

  44. Li X, W Yuan and W Dong. 2021. A machine learning method?for predicting vegetation indices in China. Remote Sens.?13:1147. https://doi.org/10.3390/rs13061147 

  45. Lorant MM, SP Davydov, H Kropp, HD Alexander, MC Mack,?SM Natali and NS Zimov. 2018. Vegetation indices do not?capture forest cover variation in upland Siberian larch forests.?Remote Sens. 10:1686. https://doi.org/10.3390/rs10111686 

  46. Na SJ, IS Kim, JH Kim and DH Lee. 2014. Growth characteristics?of Pinus densiflora seedlings by root pruning intensity. J.?Agric. Life Sci. 48:15-21. 

  47. Nordberg ML and J Evertson. 2005. Vegetation index differencing and linear regression for change detection in a Swedish?mountain range using Landsat TM ® and ETM+ ® imagery.?Land Degrad. Dev. 16:139-149. https://doi.org/10.1002/ldr.660 

  48. Obregon MA, G Rodrigues, MJ Costa, M Potes and AM Silva. 2019. Validation of ESA Sentinel-2 L2A aerosol optical thickness and columnar water vapour during 2017-2018. Remote?Sens. 11:1649. https://doi.org/10.3390/rs11141649 

  49. Park CM. 2002. The restoration technique of native forest resources on the development land applied in the new campus of Kyushu University, Japan. J. Korea Env. Res. Tech.?5:50-57. 

  50. Pettorelli N, JO Vik, A Mysterud, JM Gaillard, CJ Tucker and NC?Stenseth. 2005. Using the satellite-derived NDVI to assess?ecological responses to environmental change. Trends. Ecol.?Evol. 20:503-510. https://doi.org/10.1016/j.tree.2005.05.011 

  51. Purevdorj TS, R Tateishi, T Ishiyama and Y Honda. 1998. Relationships between percent vegetation cover and vegetation?indices. Int. J. Remote Sens. 19:3519-3535. https://doi.org/10.1080/014311698213795 

  52. Qi J, F Cabot, MS Moran and G Dedieu. 1995. Biophysical parameter estimations using multidirectional spectral measurements. Remote Sens. Environ. 54:71-83. https://doi.org/10.1016/0034-4257(95)00102-7 

  53. Rouse JW, RH Haas, JA Schel and DW Deering. 1974. Monitoring vegetation systems in the great plains with ERTS. pp.?309-317. In: Third Earth Resources Technology Satellite-1?Symposium, Volume I: Technical Presentations Section A,?NASA SP-351 (Freden SC, EP Mercanti and M Becker, eds.).?National Aeronautics and Space Administration. Washington,?D.C. 

  54. Rulinda CM, A Dilo, W Bijker and A Stein. 2012. Characterising?and quantifying vegetative drought in East Africa using fuzzy?modelling and NDVI data. J. Arid. Environ. 78:169-178.?https://doi.org/10.1016/j.jaridenv.2011.11.016 

  55. Running SW, CO Justice, V Salomonson, D Hall, J Barker, YJ Kaufmann and D Carneggie. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Int. J. Remote?Sens. 15:3587-3620. https://doi.org/10.1080/01431169408954346 

  56. Saleem MH, J Potgieter and KM Arif. 2019. Plant disease detection and classification by deep learning. Plants 8:468. https://doi.org/10.3390/plants8110468 

  57. Son MB, JH Chung, YG Lee and SJ Kim. 2021. A comparative?analysis of vegetation and agricultural monitoring of Terra?MODIS and Sentinel-2 NDVIs. J. Korean Soc. Agric. Eng.?63:101-115. https://doi.org/10.5389/KSAE.2021.63.6.101 

  58. Verbesselt J, A Robinson, C Stone and D Culvenor. 2009. Forecasting tree mortality using change metrics derived from?MODIS satellite data. For. Ecol. Manage. 258:1166-1173.?https://doi.org/10.1016/j.foreco.2009.06.011 

  59. Wang FM, JF Huang, YL Tang and XZ Wang. 2007. New vegetation index and its application in estimating leaf area index?of rice. Rice Sci. 14:195-203. https://doi.org/10.1016/S1672-6308(07)60027-4 

  60. Wang Z, T Wang, R Darvishzadeh, AK Skidmore, S Jones, L?Suarez, W Woodgate, U Heiden, M Heurich and J Hearne.?2016. Vegetation indices for mapping canopy foliar nitrogen?in a mixed temperate forest. Remote Sens. 8:491. https://doi.org/10.3390/rs8060491 

  61. Watson G. 1985. Tree size affects root regeneration and top?growth after transplanting. J. Arboric. 11:37-40. 

  62. Watson GW. 1986. Cultural practices can influence root development for better transplanting success. J. Environ. Hortic.?4:32-34. 

  63. Watson WT. 2005. Influence of tree size on transplant establishment and growth. HortTechnology 15:118-122. https://doi.org/10.21273/HORTTECH.15.1.0118 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로