최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Acta astronautica, v.161, 2019년, pp.44 - 56
Peng, Hao (Corresponding author.) , Bai, Xiaoli
Abstract A machine learning (ML) approach has been recently proposed to improve the orbit prediction accuracy of resident space objects (RSOs) through learning from historical data. Previous results have shown that the ML approach can successfully improve the point estimation accuracy. This paper e...
Acta Astronaut. Liou 62 2 264 2008 10.1016/j.actaastro.2006.12.030 A statistical analysis of the future debris environment
Acta Astronaut. Liou 66 5-6 648 2010 10.1016/j.actaastro.2009.08.005 Controlling the growth of future LEO debris populations with active debris removal
Acta Astronaut. Olympio 99 263 2014 10.1016/j.actaastro.2014.03.005 Space debris selection and optimal guidance for removal in the SSO with low-thrust propulsion
Prog. Aero. Sci. Shan 80 18 2016 10.1016/j.paerosci.2015.11.001 Review and comparison of active space debris capturing and removal methods
Acta Astronaut. Nesvold 146 33 2018 10.1016/j.actaastro.2018.01.049 The Deflector Selector: a machine learning framework for prioritizing hazardous object deflection technology development
Acta Astronaut. Perez 110 58 2015 10.1016/j.actaastro.2014.12.018 Neural Network based calibration of atmospheric density models
Acta Astronaut. San-Juan 137 254 2017 10.1016/j.actaastro.2017.04.015 Hybrid SGP4 orbit propagator
Adv. Space Res. Peng 61 10 2628 2018 10.1016/j.asr.2018.03.001 Improving orbit prediction accuracy through supervised machine learning
J. Aerosp. Inf. Syst. Peng 15 6 366 2018 Exploring capability of support vector machine for improving satellite orbit prediction accuracy
J. Spacecr. Rocket. Peng 55 5 1248 2018 10.2514/1.A34171 Artificial neural network-based machine learning approach to improve orbit prediction accuracy
Peng 1 2018 69th International Astronautical Congress (IAC), Bremen, Germany Comparison of effective machine learning algorithms on improving orbit prediction accuracy
Rasmussen 2006 Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning
Bishop 2006 Pattern Recognition and Machine Learning, Information Science and Statistics
Murphy 2012 Machine Learning: A Probabilistic Perspective, Adaptive Computation and Machine Learning Series
Chen 1118 2017 2017 13th IEEE Conference on Automation Science and Engineering Learning-based modeling and control of underactuated balance robotic systems
IEEE Trans. Control Syst. Technol. Klenske 24 1 110 2016 10.1109/TCST.2015.2420629 Gaussian process-based predictive control for periodic error correction
J. Guid. Control Dyn. Shang 40 5 1144 2017 10.2514/1.G000576 Assessing accessibility of main-belt asteroids based on Gaussian process regression
J. Guid. Control Dyn. Eerland 39 12 2661 2016 10.2514/1.G000537 Modeling the dispersion of aircraft trajectories using Gaussian processes
J. Guid. Control Dyn. Yan 40 6 1403 2017 10.2514/1.G002383 Probabilistic approach to conformance monitoring using Gaussian processes
Mon. Not. R. Astron. Soc. Almosallam 462 1 726 2016 10.1093/mnras/stw1618 GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
Almosallam 2017 Heteroscedastic Gaussian Processes for Uncertain and Incomplete Data
Mon. Not. R. Astron. Soc. Gomes 475 1 331 2018 10.1093/mnras/stx3187 Improving photometric redshift estimation using GPz: size information, post processing, and improved photometry
H. Peng, X. Bai, Machine learning approach to improve satellite orbit prediction accuracy: validation using publicly available data (accepted), J. Astronaut. Sci..
Vallado 1997 Fundamentals of Astrodynamics and Applications
J. Mach. Learn. Res. Quinonero-Candela 6 Dec 1939 2005 A unifying view of sparse approximate Gaussian process regression
Maisonobe 2010 4th International Conference on Astrodynamics Tools and Techniques Orekit: an open source library for operational flight dynamics applications
Adv. Space Res. Pearlman 30 2 135 2002 10.1016/S0273-1177(02)00277-6 The international laser ranging service
R. L. Ricklefs, Consolidated Laser Ranging Prediction Format v1.01, ILRS Data Format and Procedures Working Group.
Peng 1 2018 AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, 2018 Generalization capability of machine learning approach among different satellites: validated using TLE data
Hobson 2014 Sensor Management for Enhanced Catalogue Maintenance of Resident Space Objects
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.