$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Quantum Modeling of Nanoscale Symmetric Double-Gate InAlAs/InGaAs/InP HEMT 원문보기

Journal of semiconductor technology and science, v.13 no.4, 2013년, pp.342 - 354  

Verma, Neha (Microelectronics Research Laboratory, Department of Electronic Science, A.R.S.D College, University of Delhi, South Campus) ,  Gupta, Mridula (Semiconductor Device Research Laboratory, Department of Electronic Science, University of Delhi, South Campus) ,  Gupta, R.S. (Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology) ,  Jogi, Jyotika (Microelectronics Research Laboratory, Department of Electronic Science, A.R.S.D College, University of Delhi, South Campus)

Abstract AI-Helper 아이콘AI-Helper

The aim of this work is to investigate and study the quantum effects in the modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT (High Electron Mobility Transistor). In order to do so, the carrier concentration in InGaAs channel at gate lengths ($L_g$) 100 nm and 50 nm, are ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The two 2-DEG layers formed in the channel between the two heterostructures cease to be independent and start behaving like a combined system. The authors in this work attempted to explore the effects due to quantum mechanical confinement in a channel formed by a double heterostructure device. The proposed quantum model treats the channel as a double triangular quantum well.
  • The model used in this paper is quantum moments model or density gradient model. This model incorporates device characteristics like drain characteristics (ID-VDS ), transfer-characteristics (ID-VGS ), transconductance (gm), output conductance (gd ), gate-source capacitance (CGS ), gate-drain capacitance (CGD) and cut-off frequency (fT) of InAlAs/InGaAs/InP DGHEMT. The results so obtained are compared with a semi-classical model (i.
  • To trace how the dominant trends of quantum effects are impacting DGHEMT, new challenges are directed on the device simulator to identify the limiting and critical parameters for improved performance. This paper deals with the quantum effects in InAlAs/InGaAs/ InP double gate HEMT (DGHEMT) where the layers with confined electrons are so thin that the laws of quantum physics start manifesting themselves. The two 2-DEG layers formed in the channel between the two heterostructures cease to be independent and start behaving like a combined system.

이론/모형

  • The proposed quantum model treats the channel as a double triangular quantum well. The model used in this paper is quantum moments model or density gradient model. This model incorporates device characteristics like drain characteristics (ID-VDS ), transfer-characteristics (ID-VGS ), transconductance (gm), output conductance (gd ), gate-source capacitance (CGS ), gate-drain capacitance (CGD) and cut-off frequency (fT) of InAlAs/InGaAs/InP DGHEMT.
  • Classically the moments of the Boltzmann equation are taken with respect to momentum which attains a simpler form of equations, but it becomes impractically complex for the quantum mechanical applications. Therefore in order to reach at much simpler equations for the quantum part which should be comparable to the classical simplicity, the method of moments is applied to the Wigner equation. This leads to equations that contain additional quantum correction terms.
  • On the other hand, drift-diffusion equations are advantageous as they are the most general and commonly used set of equations in hetero-junction device simulation codes. Thus, the authors have used quantum moments model which is also known as quantum drift-diffusion method (density-gradient model) and compared it with a semi-classical drift-diffusion model. This has helped in observing the change from drift-diffusion modeling to quantum drift-diffusion modeling (where the quantum confinement is included).
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," IBM J. Res. and Dev., Vol.14, No.1, pp.61-65, Jan., 1970. 

  2. P. Ho, P. C. Chao, K. H. G. Duh, A. A. Jabra, J. M. Ballingall and P. M. Smith, "Extremely high gain, low noise InA1As/InGaAs HEMTs grown by MBE," IEDM 1988, Technical Digest, 11-14, pp. 184-186, Dec., 1988. 

  3. U. K. Mishra, A. S. Brown, S. E. Rosenbaum, M. J. Delaney, S. Vaughn and K. White, "Noise performance of submicrometer AlInAs-GaInAs HEMTs," IEEE Trans. on Electron Dev., Vol.35, No.12, pp.2441-2442, Dec., 1988. 

  4. E. Sano, "InP HEMT lightwave communication ICs for 40 Gbit/s and beyond," IPRM 1999, 11th IEEE International Conference on Indium Phosphide and Related Materials, 1999, 16-20, pp.299-304, May, 1999. 

  5. Y. Umeda, T. Enoki, T. Otsuji, T. Suemitsu, H. Yokoyama and Y. Ishii, "Ultrahigh-Speed IC technologies using InP based HEMTs for future optical communication systems," IEICE Trans. on Electronics, Vol.E82-C, No.3, pp.409-418, Mar., 1999. 

  6. T. Enoki, H. Yokoyama, Y. Umeda and T. Otsuji, "Ultra High speed integrated circuits using InP based HEMTs," Jpn. J. Appl. Phys., Vol.37, No.3B, pp.1359-1364, Mar., 1998. 

  7. Y. Kwon, D. Pavlidis, T. L. Brock and D. C. Streit, "Experimental and theoretical characteristics of high performance pseudomorphic double heterojunction $InAlAs/In_{0.7}Ga_{0.3}As/InAlAs $ HEMTs," IEEE Trans. on Electron Dev., vol.42, No.6, pp.1017-1025, Jun., 1995. 

  8. Y. Kwon, D. Pavlidis, T. L. Brock, G. I. Ng, K. L. Tan and J. R. Velebir, "Submicron pseudomorphic double heterojunction $InAlAs/In_{0.7}Ga_{0.3}As/InAlAs $ HEMTs with high cut-off and current-drive capability," IPRM 1993, 5th IEEE International Conference on Indium Phosphide and Related Materials, 1993, 19-22, pp.465-468, Apr., 1993. 

  9. N. Wichmann, I. Duszynski, S. Bollaert, J. Mateos, X. Wallart and A. Cappy, "100nm InAlAs/InGaAs Double-Gate HEMT using transferred substrate," IEDM 2004, Technical Digest, 13-15, pp. 1023- 1026, Dec., 2004. 

  10. B. G. Vasallo, N. Wichmann, S. Bollaert , A. Cappy, T. Gonzalez , D. Pardo and J. Mateos, "Monte Carlo Comparison Between InP-Based Double-Gate and Standard HEMTs," EuMIC 2006, 1st European Microwave Integrated Circuits Conference, 2006, 10-13, pp.304-307, Sep., 2006. 

  11. A-J Shey and W.H. Ku, "An analytical current- voltage characteristics model for high electron mobility transistors based on nonlinear chargecontrol formulation," IEEE Trans. on Electron Dev., Vol.36, No.10, pp.2299-2306, Oct., 1989. 

  12. H. Brech, T. Grave, T. Simlinger and S. Selberherr, "Optimization of pseudomorphic HEMTs supported by numerical simulation," IEEE Trans. on Electron Dev., Vol.44, No.11, pp.1822-1828, Nov., 1997. 

  13. H. Luth, "Nanostructures and Semiconductor Electronics," phys. stat. sol., Vol.192, No.2, pp.287-299, Dec., 1995. 

  14. E. Sano, "Simulation of Nanometer-scale Semiconductor Devices Considering Quantum Effects," Int. J. RF. Microw CE.,Vol.14, pp.283-289, Oct., 2004. 

  15. G. Krokidis, J.P. Xanthakis, N.K. Uzunoglu, "A fully 2-dimensional, quantum mechanical calculation of short-channel and drain induced barrier lowering effects in HEMTs," Solid-State Electron, Vol.52, No.5, pp.625-631, May, 2008. 

  16. ATLAS User's Manual, Silvaco International, 2010. 

  17. C. L. Gardner and C. A. Ringhofer, "Smooth Quantum potential for the Hydrodynamic Model," Phys. Rev. E., Vol.53, No.1, pp.157-167, Jan., 1996. 

  18. A.Wettstein, Quantum Effects in MOS Devices (Hartung-Gorre Verlag Konstanz, 2000). 

  19. A. Wettstein, A. Schenk, and W. Fichtner, "Quantum Device-Simulation with the Density Gradient Model on Unstructured Grids," IEEE Trans. Electron Dev., Vol.42, No.2, pp.279-283, Feb., 2001. 

  20. A. Wettstein, O. Penzin and E. Lyumkis, "Integration of Density Gradient Model into a General Purpose Device Simulator," VLSI Des., Vol.15, No.4, pp.751-759, 2002. 

  21. B. G. Vasallo, N. Wichmann, S. Bollaert, Y. Roelens, A. Cappy, T. Gonzalez, D. Pardo, and J. Mateos, "Comparison Between the Dynamic Performance of Double- and Single-Gate AlInAs/ InGaAs HEMTs," IEEE Trans. on Electron Dev., Vol.54, No.11, pp.2815-2822, Nov., 2007. 

  22. J. R. Zhou and D. K. Ferry, "Simulation of ultrasmall GaAs MESFET using quantum moment equations," IEEE Trans. on Electron Dev., Vol.39, No.3, pp.473-478, Mar., 1992. 

  23. V. Mitin, V.A. Kochelap and M.A. Stroscio, "Quantum Heterostructures: Microelectronics and Optoelectronics," Cambridge University Press, U.S.A, 1999. 

  24. N. Wichman, I. Duszynski, X. Wallart, S. Bollaert and A. Cappy, "InAlAs-InGaAs Double-Gate HEMTs on Transferred Substrate," IEEE Electron Dev Lett., Vol.25, No.6, pp.354-356, Jun., 2004. 

  25. D. Guerra, R. Akis, F. A. Marino, D. K. Ferry, S. M. Goodnick, M. Saraniti, "Aspect Ratio Impact on RF and DC Performance of State-of-the-Art Short- Channel GaN and InGaAs HEMTs," IEEE Electron Dev Lett., Vol.31, No.11, pp.1217-1219, Nov., 2010. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로