$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식품 중 무기비소의 위해 분석
Risk Analysis of Inorganic Arsenic in Foods 원문보기

한국식품위생안전성학회지 = Journal of food hygiene and safety, v.31 no.4, 2016년, pp.227 - 249  

양승현 (원광대학교 생명자원과학대학 식품환경학부) ,  박지수 (원광대학교 생명자원과학대학 식품환경학부) ,  조민자 (식품의약품안전평가원 식품위해평가부 오염물질과) ,  최훈 (원광대학교 생명자원과학대학 식품환경학부)

초록
AI-Helper 아이콘AI-Helper

비소는 화학적 형태에 따라 독성이 상이하며 무기비소의 독성이 강하며 피부병변이나 피부암을 유발시키는 발암물질로 알려져 있다. 무기비소의 인체섭취한계량으로, JECFA에서는 기존의 무기비소의 주간잠정섭취허용량 $15{\mu}g/kg$ b.w./week을 철회하였으며, EFSA에서는 폐, 피부암, 피부병변 등에 대한 $BMDL_{0.1}$ $0.3{\sim}8{\mu}g/kg$ b.w./day를 제시하였다. 식품 중 쌀, 해조류 및 음료류은 무기비소 함량이 높은 식품으로 알려져 있다. 식품 중 쌀, 해조류 및 음료류은 무기비소 함량이 높은 식품으로 알려져 있다. 쌀을 재배하는 논 토양은 혐기성으로 주요 무기비소 화학종이 As(III)이기 때문에 쌀에서도 주요 무기비소 화학종이 As(III)인 반면, 수계에서는 주로 As(V)로 존재하기에 해조류에서의 주요 무기비소 화학종은 As(V)이다. 식품 중 무기비소 분석은 증류수, 메탄올, 질산용액 등을 이용해 가온 또는 상온조건에서 추출한 후 이온교환크로마토그래피과 액체크로마토그래피를 활용하여 비소화학종을 분리하고 원자흡광광도계, 유도결합플라즈마 질량분석기를 통하여 정량 및 정성분석이 이루어지고 있으나, 국제적으로 통용되는 보편화된 방법은 아직 제시되지 않고 있다. 유럽, 미국인 등의 무기비소 노출수준은 $0.13{\sim}0.7{\mu}g/kg$ bw/day인 반면, 우리나라를 포함한 아시아인의 무기비소 노출수준은 $0.22{\sim}5{\mu}g/kg$ bw/day인 것으로 추정되고 있다. 각 국가에서는 식품 중 무기비소 기준을 설정하고 있으며 국내에서도 관련 기준 설정을 준비 중에 있다. 현재까지 식품 중무기비소 저감화를 위해 많은 연구가 이루어지고 있으며, 쌀의 경우 도정도를 높이거나 세척을 많이 할수록, 해조류는 끓이는 과정을 통해 무기비소 함량을 크게 줄일 수 있다. 식품 중 무기비소 안전관리 강화를 위해서는 관련 시험법의 국제적 조화, 실태조사를 통한 무기비소 노출에 관한 지속적인 연구가 요구된다.

Abstract AI-Helper 아이콘AI-Helper

Arsenic and its compounds vary in their toxicity according to the chemical forms. Inorganic arsenic is more toxic and known as carcinogen. The provisional tolerable weekly intake (PTWI) of $15{\mu}g/kg$ b.w./week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
비소란 무엇인가? 비소는 주기율표 15족의 질소족 원소의 하나인 준금속으로 원자량이 75이다. 비소는 지구 어디에도 존재할 수 있는 원소로써 지각에는 2 mg/kg 정도 존재하고 담수에는 0.
식품 내 비소는 화학적 형태에 따라 인체에 어떤 영향을 미치는가? 비소는 지구상에 존재하는 금속 중 20번째로 많은 금속으로 환원성이 강하고 불안정하여 공기 중에서 태우면 삼산화비소(arsenic trioxide)가 된다7). 비소는 다른 금속류와 마찬가지로 환경 및 식품 중에서 다양한 화학적 형태로 존재하는데 크게 무기비소(inorganic arsenic)와 유기비소(organic arsenic)의 형태로 구분된다8). 무기비소는 유기비소에 비해 독성이 강하며 피부병변이나 피부암을 유발시키는 발암물질로 알려져 있으나, 유기비소의 건강영향은 미비한 수준이다9,10). 식품 내 비소는 대부분이 독성이 낮은 유기비소이기 때문에 무기비소만을 선택적으로 확인하여 위해성을 판단해야 하지만, 아직까지 국제적으로 통용되는 보편화된 무기비소 분석법이 제시되지 않았고 높은 분석비용으로 식품 내 무기비소 함량 조사가 부족한 상황이다.
식품 중 존재하는 비소 화학종 중 무기비소의 종류는 무엇인가? 01 mg/L 이하, 해수에는 1~8 g/L 정도 존재하는 것으로 알려져 있다7). 자연계에서 다양한 화학적 형태로 존재하지만 환경 및 식품 중 존재하는 비소 화학종 중 무기비소로는 산화상태가 다른 3가 비소인 arsenic trioxide (As(III))와 5가 비소인 arsenic pentoxide (As(V))가 있으며 유기비소로는 monomethylarsinic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide, tetramethylarsonium ion, arsenobetaine (AsB), arsenocholine (AsC)와 다양한 arsenosugars와 arsenolipids 등이 있다(Fig. 1)16,17).
질의응답 정보가 도움이 되었나요?

참고문헌 (146)

  1. Holmgren, G.G., Meyer, S.M., Chaney, R.L. and Daniels, R.B.: Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J. Environ. Qual., 22, 335-348 (1993). 

  2. Smith, S.R.: Agricultural recycling of sewage sludge and the environment. WRC Marlow Buckinghamshire, UK. (1996). 

  3. Vulava, V.M., James, B.R. and Torrentsm, A.: Copper solubility in Myersville B horizon soil in the presence of DTPA. Soil. Sci. Soc. Am. J., 61, 44-52 (1997). 

  4. World Health Organization (WHO): 17th Report of the joint FAO/WHO Expert Committee on Food Additives, Technial Report Series No. 539, World Health Organization, Geneva, Switzerland (1974). 

  5. GEMS/Food Programme: Instructions for electronic submission of data on chemical contaminants in food and the diet, World Health Organization, Geneva, Switzerland (2011). 

  6. Ministry of Food and Drug Safety (MFDS): Food Code, Ministry of Food and Drug Safety, Cheongju, Korea (2015). 

  7. The Joint FAO/WHO Expert Committee on Food Additives (JECFA): Arsenic, In JECFA Monographs 658 (WHO Food Additives Series 24), World Health Organization, Geneva, Switzerland (1988). 

  8. European Food Safety Authority (EFSA): Scientific opinion on arsenic in food. EFSA J., 7, 1351 (2009). 

  9. International Agency for Research on Cancer (IARC): Some drinking-water disinfectants and contaminants, including arsenic, In IARC mongraphs on the evaluation of carcinogenic risks to humans (v. 84), International Agency for Research on Cancer, Lyon, France (2004). 

  10. Agency for Toxic Substances and Disease Registry (ATSDR): Toxicology profile for arsenic. Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia (2007). 

  11. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahmann, M.: Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338 (1998). 

  12. Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V., Schertenleib, R. and Giger, W.: Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol., 35, 2621-2626 (2001). 

  13. Christen, K.: The arsenic threat worsens. Environ. Sci. Technol., 35, 286A-291A (2001). 

  14. Joseph, T., Dubey, B. and McBean, E.A.: Human health risk assessment from arsenic exposures in Bangladesh. Sci. Total Environ., 527-528, 552-560 (2015). 

  15. Codex Alimentarius Commission: Joint FAO/WHO Food Standards Programme, Codex Committee on Contaminants in Foods: Proposed draft maximum levels for arsenic in rice. Maastricht, Netherlands (2012). 

  16. Munoz, O., Velez, D., Montoro, R., Arroyo, A. and Zamorano, M.J.: Determination of inorganic arsenic [As(III)+As(V)] in water samples by microwave assisted distillation and hydride generation atomic absorption spectrometry. Anal. Atom. Spectrom., 15, 711-714 (2000). 

  17. Devesa, V., Martinez, A., Suner, M.A., Benito, V., Velez, D. and Montoro, R.J.: Kinetic study of transformations of arsenic species during heat treatment. Food. Chem., 49, 2267-2271 (2001). 

  18. Masscheleyn, P.H., Delaune, R.D. and Patrick, Jr, W.H.: Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol., 25, 1414-1419 (1991). 

  19. Choi, Y.M., Choi, W.H., Kim, J.H. and Park, J.Y.: Adsorption of arsenate on the synthesized layered double hydroxide materials. J. Korean Soc. Civil. Eng., 29, 91-96 (2009). 

  20. Stiboller, M., Raber, G. and Francesconi, K.A.: Simultaneous determination of glycine betaine and arsenobetaine in biological samples by HPLC/ICPMS/ESMS and the application to some marine and freshwater fish samples. Microchem. J., 122, 172-175 (2015). 

  21. European Food Safety Authority (EFSA): Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to arsenic as undesirable substance in animal feed. EFSA J., 180, 1-35 (2005). 

  22. Wi, H.S., Lee, S.H., Seo, Y.H., Kim, J.G., Kim, G.C., Jang, C.S. and Roh, H.K.: A fetal case of acute arsenic poisoning. Korean J. Med., 69, 101-106 (2005). 

  23. Milstein, L.S., Essader, A., Murrell, C., Pellizzari, E., Fernando, R.A., Raymer, J.H. and Akinbo, O.: Sample preparation, extaction efficiency, and determination of six arsenic species present in food composites. J. Agric. Food Chem., 51, 4180-4184 (2003). 

  24. The Joint FAO/WHO Expert Committee on Food Additives (JECFA): Evaluation of certain contaminants in food (WHO Technical Report Series 959), World Health Organization, Geneva, Switzerland (2011). 

  25. DeStefano, A.J., Zaidi, K., Cecil, T.L., Giancaspro, G.I. and the USP Elemental Impurities Advisory Panel: Elemental Impurities-Information. Pharmacopeial Forum. 36, 2-9 (2010). 

  26. U.S. Environmental Protection Agency (EPA): Arsenic, inorganic (CASRN 7440-38-2) In: U.S. Environmental Protection Agency Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, USA (1995) https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr278. 

  27. Li, J.H., and Rossman, T.G.: Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis. Mol. Toxicol., 2, 1-9 (1989). 

  28. Tabocova, S., Hunter, E.S., and Gladen, B.C.: Developmental toxicity of inorganic arsenic in whole embryo: culture oxidation state, dose, time, and gestational age dependence. Toxicol. Appl. Pharmacol., 138, 298-307 (1996). 

  29. Wlodarczyk, B.J., Bennett, G.D., Calvin, J.A., and Finnell, R.H.: Arsenic-induced neural tube defects in mice: alterations in cell cycle gene expression. Reprod. Toxicol., 10, 447-454 (1996). 

  30. World Health Organization (WHO): Principles and methods for the risk assessement of chemicals in food. World Health Organization, Geneva, Switzerland (2008). 

  31. World Health Organization (WHO): Specifications for the identify and purity of food additives and their toxicological evaluation (Tenth report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 373, Geneva, Switzerland, pp. 15 (1967). 

  32. The Joint FAO/WHO Expert Committee on Food Additives (JECFA): Summary and conclusions of seventy-second meeting (JECFA/72/SC), Geneva, Switzerland (2010). 

  33. Tseng, W.P., Chu, H.M., How, S.W., Fong, J.M., Lin, C.S. and Yen, S.: Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst., 40, 453-463 (1968). 

  34. Tseng, W.P.: Effects and dose-response relationships of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect., 19, 109-119 (1977). 

  35. Rijksinstituut voor Volksgezondheid en Milieu (RIVM): Reevaluation of human-toxicological maximum permissible risk levels (RIVM report 711701 025), Bilthoven, Netherlands (2001). 

  36. Das, H.K., Mitra, A.K., Sengupta, P.K., Hossain, A., Islam, F. and Rabbani, G.H.: Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ. Int., 30, 383-387 (2004). 

  37. Ohno, K., Matsuo, Y., Kimura, T., Yanase, T., Rahman, M.H., Magara, Y., Matsushita, T. and Matsui, Y.: Effect of rice-cooking water to the daily arsenic intake in Bangladesh: results of field surveys and rice-cooking experiments. Water Sci. Tech., 59, 195-201 (2009). 

  38. Lee, J.S. and Chon, H.T.: Risk assessment of arsenic by human exposure of contaminated soil, groundwater and rice grain. Econ. Environ. Geol., 38, 535-545 (2005). 

  39. Williams, P.N., Price, A.H., Raab, A., Hossain, S.A., Feldmann, J. and Meharg, A.A.: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol., 39, 5531-5540 (2005). 

  40. Paik, M.K., Kim, W.I., Yoo, J.H., Kim, J.K., Im, G.J. and Hong, M.K.: A probabilistic assessment of human health risk from arsenic-contaminated rice grown near the mining areas of Korea. J. Fd. Hyg. Safety, 25, 143-147 (2010). 

  41. Choi, J.Y., Khan, N., Nho, E.Y., Choi, H., Park, K.S. and Kim, K.S.: Speciation of arsenic in rice by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Anal. Letters, 49, 1926-1937 (2016). 

  42. Food and Agriculture Organization (FAO): FAOSTAT Database - Production (updated 17 May, 2011). Food and Agriculture Organization of the United Nations, Rome, Italy (2011) http://faostat.fao.org/default.aspx. 

  43. Kennedy, G. and Burlingame, B.: Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem., 80, 589-596 (2003). 

  44. Food and Agricultural Organization (FAO): FAO rice information (Vol. 2). Food and Agriculture Organization of the United Nations, Rome, Italy (2000). 

  45. Sun, G.X., Williams, P.N., Zhu, Y.G., Deacon, C., Carey, A.M., Raab, A., Feldmann, J. and Meharg, A.A.: Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ Int., 35, 473-475 (2009). 

  46. Rahman, M.A., Rahman, I.M.M. and Hasegawa, H.: Cooking: effects on dietary exposure to arsenic from rice and vegetables. Encyclopedia Environ. Health, 6, 828-833 (2011). 

  47. Li, X., Xie, K., Yue, B., Gong, Y., Shao, Y., Shang, X. and Wu, Y.: Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population. Sci. China Chem., 58, 1898-1905 (2015). 

  48. Chen, H.L., Lee, C.C., Huang, W.J., Huang, H.T., Wu, Y.C., Hsu, Y.C. and Kao, Y.T.: Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environ. Sci. Pollut. Res., 23, 4481-4488 (2016). 

  49. Meharg, A.A. and Hartley-Whitaker, J.: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol., 154, 29-43 (2002). 

  50. Kramar, U., Norra, S., Berner, Z., Kiczka, M. and Chandrasekharam, D.: On the distribution and speciation of arsenic in the soil-plant-system of a rice field in West-Bengal, India: A ${\mu}$ -synchrotron techniques based case study. Applied Geochem., available online 26 November 2015, In press (2015). 

  51. William, P.N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A., Feldmann, J. and Meharg, A.A.: Greatly enhanced arsenic shoot assimilation in rice lead to elevate grain levels compared to wheat and barley. Environ. Sci. Technol., 41, 6854-6859 (2007). 

  52. Kim, J.Y., Lee, J.H., Kunhikrishnan, A., Kang, D.W., Kim, M.J., Yoo, J.H., Kim, D.H., Lee, Y.J. and Kim, W.I.: Transfer factor of heavy metals from agricultural soil to agricultural products. Korean J. Environ. Agric., 31, 300-307 (2012). 

  53. Meharg, A.A. and Zhao, F.J.: Arsenic and rice. Springer (2012). 

  54. Choi, H., Kim, H.S. and Park, S.H.: Risk assessment of heavy metals through modified milk powder and formulas. Korean J. Food Sci. An., 33, 617-625 (2013). 

  55. Food Standards Australia New Zealand (FSANZ): Survey of inorganic arsenic in seaweed and seaweed-containing products available in Australia. Food Standards Australia New Zealand, Canberra, Australia (2013). 

  56. European Food Safety Authority (EFSA): Dietary exposure to inorganic arsenic in the European population. EFSA J., 12, 3597 (2014). 

  57. Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM): Dietary exposure to inorganic arsenic in the Norwegian population. Assessment of the Panel on Contaminants of the Norwegian Scientific Committee for Food Safety. VKM, Oslo, Norway (2016). 

  58. Munoz, O., Velez, D. and Montoro, R.: Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III)+A(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry. Analyst, 124, 601-607 (1999). 

  59. Munoz, O., Devesa, V., Suner, M.A., Velez, D., Montoro, R., Urieta, I., Macho, M.L. and Jalon, M.: Total and inorganic arsenic in fresh and processed fish products. J. Agric. Food Chem., 48, 4369-4376 (2000). 

  60. Sloth, J.J., Larsen, E.H. and Julshamn, K.: Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography inductively coupled plasma mass spectrometry. J. Agric. Food Chem., 53, 6011-6018 (2005). 

  61. Ryu, K.Y., Shim, S.L., Hwang, I.M., Jung, M.S., Jun, S.N., Seo, H.Y., Park, J.S., Kim, H.Y., Om, A.S., Park, K.S. and Kim, K.S.: Arsenic speciation and risk assessment of Hijiki (Hizikia fusiforme) by HPLC-ICP-MS. Korean J. Food Sci. Technol., 41, 1-6 (2009). 

  62. Shimoda, Y., Suzuki, Y., Endo, Y., Kato, K., Tachikawa, M., Endo, G. and Yamanaka, K.: Speciation analysis of arsenic in commercial Hijiki by high performance liquid chromatography-tandem-mass spectrometry and high performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Health Sci., 56, 47-56 (2010). 

  63. Khan, N., Ryu, K.Y., Choi, J.Y., Nho, E.Y., Habte, G., Choi, H., Kim, M.H., Park, K.S. and Kim, K.S.: Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea. Food Chem., 169, 464-470 (2015). 

  64. Ministry of Health and Welfare (MOHW): Korea Health Statistics 2014: Korea National Health & Nutrition Examination Survey (KNHANES VI-1), MOHW, Seoul, Korea (2015). 

  65. Food Standards Australia New Zealand (FSANZ): Survey of total arsenic and inorganic arsenic in apple and pear juice. Food Standards Australia New Zealand, Canberra, Australia (2013). 

  66. Consumer Report: Consumer reports tests juices for arsenic and lead. Consumer Report News (2011) http://www.consumerreports.org/cro/news/2011/11/consumer-reports-tests-juices-for-arsenic-and-lead/index.htm. 

  67. U.S. Food and Drug Administration (FDA): FDA proposes "action level" for arsenic in apple juice. U.S. Food and Drug Administration, Silver Spring, MD, USA (2013) http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm360466.htm. 

  68. Brooke, P.J. and Evans, W.H.: Determination of total inorganic arsenic in fish, shellfish and fish products. Analyst, 106, 514-520 (1981). 

  69. Maher, W.A.: Determination of inorganic and methylated arsenic species in marine organisms and sediments. Anal. Chim. Acta., 126, 157-165 (1981). 

  70. Holak, W. and Specchio, J.J.: Determination of total arsenic, As(III) and As(V) in foods by atomic absorption sepctrometry. At. Spectrosc., 12, 105-108 (1991). 

  71. Nearing, M.M., Koch, I. and Reimer, K.J.: Complementary arsenic speciation method: A review. Spectrochimica Acta Part B, 99, 150-162 (2014). 

  72. Sanz, E., Munoz-Olivas, R. and Camara, C.: A rapid and novel alternative to conventional sample treatment for arsenic speciation in rice using enzymatic ultrasonic probe. Anal. Chimica Acta., 535, 227-235 (2005). 

  73. Huang, J.H., Ilgen, G. and Fecher, P.: Quantitative chemical extraction for arsenic speciation in rice grains. J. Anal. At. Spectrom., 25, 800-8025 (2010). 

  74. Cerveira, C., Pozebon, D., Moraes, D.P. and Fraga, J.C.S.: Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HG-AAS). Anal. Methods, 7, 4528-4534 (2015). 

  75. Naito, S., Matsumoto, E., Shindoh, K. and Nishimura, T.: Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem., 168, 294-301 (2015). 

  76. Rintala, E.M., Ekholm, P., Koivisto, P., Peltonen, K. and Venalainen, E.R.: The intake of inorganic arsenic from long grain rice and rice-based baby food in Finland - Low safety margin warrants follow up. Food Chem., 150, 199-205 (2014). 

  77. Musil, S., Petursdottir, A.H., Raab, A., Gunnlaugsdottir, H., Krupp, E. and Feldmann, J.: Speication without chromatography using seletive hydride generation: Inorganic arsenic in rice and samples of marine origin. Anal. Chem., 86, 993-999 (2014). 

  78. Raab, A. and Ducos, S.M.: Determination of inorganic arsenic in rice using IC-ICP-MS. Application Note 43255, Thermo Fisher Scientific, Bremen, Germany (2015). 

  79. Signes-Pastor, A.J., Carey M. and Meharg, A.A.: Inorganic arsenic in rice-based products for infants and young children. Food Chem., 191, 128-134 (2016). 

  80. Batista, B.L., Souza, J.M.O., De Souza, S.S. and Barbosa, F.Jr: Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J. Hazard Mat., 191, 342-348 (2011). 

  81. Narukawa, T., Inagaki, K., Kuroiwa, T. and Chiba, K.: The extraction and speciation of arsenic in rice flour by HPLCICP-MS. Talanta, 77, 427-432 (2008). 

  82. Narukawa, T., Hioki, A. and Chiba, K.: Speciation and monitoring test for inorganic arsenic in white rice flour. J. Agri. Food Chem., 60, 1122-1127 (2012). 

  83. Ma, L., Wang, L., Tang, J. and Yang, Z.: Optimization of arsenic extraction in rice samples by Plackett-Burman design and response surface methodology. Food Chem., 204, 283-288 (2016). 

  84. Amaral, C.D.B., Nobrega, J.A., and Nogueira, A.R.A.: Sample preparation for arsenic speciation in terrestrial plants - A review. Talanta, 115, 291-299 (2013). 

  85. Ma, L., Wang, L., Jia Y. and Yang, Z.: Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk. Sci. Total Environ., 557-558, 438-444 (2016). 

  86. D'Amato, M., Forte, G. and Caroli, S.: Identification and quantification of major species of arsenic in rice. J. AOAC Int., 87, 238-243 (2004). 

  87. Sanz, E., Munoz-Olivas, R., Camara, C., Sengupta, M.K. and Ahamed, S.: Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 42, 1695-1705 (2007). 

  88. Raber, G., Stock, N., Hanel, P., Murko, M., Navratilova, J. and Francesconi, K.: An improved HPLC-ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chem., 134, 524-532 (2012). 

  89. Heitkemper, D., Vela, N.P., Stewart, K.R. and Westphal, C.S.: Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 16, 299-306 (2001). 

  90. Vela, N.P. and Heitkemper, D.T.: Total arsenic determination and speciation in infant food products by ion chromatography-inductively coupled plasma-mass spectrometry. J. AOAC Int., 87, 244-252 (2004). 

  91. Liang, F., Li, Y., Zhang, G., Tan, M., Lin, J., Liu, W., Li, Y. and Lu, W.: Total and speciated arsenic levels in rice from China. Food Additi. Contam. Part A, 27, 810-816 (2010). 

  92. Li, W., Wei, C., Zhang, C., Hulle, M.V., Cornelis, R. and Zhang, X.: A survey of arsenic species in chinese seafood. Food Chem. Toxicol., 41, 1103-1110 (2003). 

  93. Hata, A., Yamanaka, K., Endo, G., Yamano, Y., Haba, R., Fujitani, N. and Endo, Y.: Arsenic metabolites in humans after ingestion of wakame seaweed. E3S Web of Conference, 1, 26006 (2013). 

  94. Wangkarn, S. and Pergantis, S.A.: High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 15, 627-633 (2000). 

  95. Choi, H., Park, S.K., Kim, D.S. and Kim, M.: Determination of 6 arsenic species present in seaweed by solvent extraction, clean-up, and LC-ICP/MS. Food Sci. Biotechnol., 20, 39-44 (2011). 

  96. Hsieh, Y.J. and Jiang, S.J.: Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. J. Agri. Food Chem., 60, 2083-2089 (2012). 

  97. Narukawa, T., Hioki, A. and Chiba, K.: Aqueous extraction of water-soluble inorganic arsenic in marine algae for speciation analysis. Anal. Sci., 28, 773-779 (2012). 

  98. Nischwitz, V. and Pergantis, S.A.: Improved arsenic speciation analysis for extracts of commercially available edible marine algae using HPLC-ES-MS/MS. J. Agric. Food. Chem., 54, 6507-6519 (2006). 

  99. Garcia-Salgado, S., Quijano, M.A. and Bonilla, M.M.: Arsenic speciation in edible algae samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Anal. Chem., 714, 38-46 (2012). 

  100. Petursdottir, A.H., Gunnlaugsdottir, H., Krupp, E.M. and Feldmann, J.: Inorganic arsenic in seafood: Does the extraction method matter? Food Chem., 150, 353-359 (2014). 

  101. Food Standard Agency (FSA): Arsenic in rice drinks. Food Standard Agency, London, UK (2009). 

  102. Roberge, J., Abalos, A.T., Skinner, J.M., Kopplin, M. and Harris, R.B.: Presence of arsenic in commercial beverages. American J. Environ. Sci., 5, 688-694 (2009). 

  103. Moreno, E., Camara, C., Corns, W.T., Bryce, D.W. and Stockwell, P.B.: Arsenic speciation in beverages by direct injection-ion chromatography-hydride generation atomic fluorescence spectrometry. J. Automated Methods Manage. Chem., 22, 33-39 (2000). 

  104. Song, M.J., Park, K.S., Kim, Y.M. and Lee, W.: Effects and optimum conditions of pre-reductant in the analysis of inorganic arsenic by hydride generation-atomic absorption spectrometry. Anal. Sci. Technol., 18, 396-402 (2005). 

  105. Choi, S.H., Choi, J.W., Cho, Y.M. and Bae, M.J.: Comparisons of urinary arsenic analysis by pre-reductant for preconditioning via the FI-HG-AAS method. J. Environ. Health Sci., 41, 289-298 (2015). 

  106. Oygard, J.K., Lundebye, A.K. and Julshamn, K.: Determination of inorganic arsenic in marine food samples by hydrochloric acid distillation and flow-injection hydride-generation atomic absorption spectrometry. J. AOAC Int., 82, 1217-1223 (1999). 

  107. Lim, H.S. and Lee, S.G.: Effects of acid and pre-reductant in the analysis of arsenic by hydride generation-atomic absorption spectrometry. Anal. Sci. Technol., 13, 151-157 (2000). 

  108. Gurkan, R., Kir, U. and Altunay, N.: Development of a simple, sensitive and inexpensive ion-paring cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV-Vis spectrometry. Food Chem., 180, 32-41 (2015). 

  109. Altunay, N., Gurkan, R. and Kir, U.: Spectrophotometric determination of low levels arsenic species in beverages after ion-pairing vortex-assisted cluod point extraction with acridine red. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess., 33, 259-270 (2016). 

  110. Yalcin, S. and Le, X.C.: Speciation of arsenic using solid phase extraction cartridges. J. Environ. Monit., 3, 81-85 (2001). 

  111. Bralatei, E., Lacan, S., Krupp, E.M. and Feldmann, J.: Detection of inorganic arsenic in rice using a field test kit: a screening method. Anal. Chem., 87, 11271-11276 (2015). 

  112. Laparra, J.M., Velez, D., Montoro, R., Barbera, R. and Farre, R.: Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J. Agric. Food Chem., 51, 6080-6085 (2003). 

  113. Garcia-Rico, L. and Tejeda-Valenzuela, L.: Total and inorganic arsenic in dietary supplement supplies in northern Mexico. Environ. Monit. Assess., 185, 6111-6117 (2013). 

  114. Herce-Pagliai, C., Moreno, I., Gonzalez, G., Repetto, M. and Camean, A.M.: Determination of total arsenic, inorganic and organic arsenic species in wine. Food Addi. Contam., 19, 542-546 (2002). 

  115. Yang, H., Christison, T. and Lopez, L.: Determination of total inorganic arsenic in fruit juice using high-pressure caillary ion chromatography (Technical Note 145), Thermo Fisher Scientific, Bremen, Germany (2014). 

  116. Brandon, E.F.A., Janssen, P.J.C.M. and Wit-Bos, L.: Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment. Food Addi. Contam. Part A, 31, 1993-2003 (2014). 

  117. Kollander, B. and Sundstrom, B.: Inorganic arsenic in rice and rice products on the Swedish market 2015, Part I- A survey of inorganic arsenic (Rapport 16). The Swedish National Food Agency, Uppsala, Sweden (2015). 

  118. Nishimura, T., Nagaoka, M.H., Sakakibara, N., Abe, T., Maekawa, Y. and Maitani, T.: Determination method for total arsenic and partial-digestion method with nitric acid for inorganic arsenic speciation in several varieties of rice. Food Hygi. Safety Sci., 51, 178-181 (2010). 

  119. Meharg, A.A., Sun, G., Williams, P.N., Adomako, E., Deacon, C., Zhu, Y.G., Feldmann, J. and Raab, A.: Inorganic arsenic levels in baby rice are of concern. Environ. Pollut., 152, 746-749 (2008). 

  120. Choi, S.H., Kim, J.S., Lee, J.Y., Jeon, J.S., Kim, J.W., Russo, R.E., Gonzalez, J., Yoo, J.H., Kim, K.S., Yang, J.S. and Park, K.S.: Analysis of arsenic in rice grains using ICP-MS and fs LA-ICP-MS. J. Anal. At. Spectrom., 29, 1233-1237 (2014). 

  121. Lee, J.H., Kim, W.I., Jeong, E.J., Yoo, J.H., Kim, J.Y., Paik, M.K., Park, B.J., Im, G.J. and Hong, M.K.: Arsenic contamination of polished rice produced in abandoned mine areas and its potential human risk assessment using probabilistic techniques. Korean J. Environ. Agric., 30, 43-51 (2011). 

  122. Islam, J.M., Kim, B.C., Laiju, N., Nasirullah, T. and Miah, M.N.: Arsenic concentrations of groudwater and rice grains in Bangladesh and phytoremediation. J. Korean Soc. Water Qual., 26, 116-124 (2010). 

  123. National Institute of Fisheries Science (NIFS): Chemical composition of marine products in Korea, 2th Ed. National Institute of Fisheries Science, Pusan, Korea (2009). 

  124. Rose, M., Lewis, J., Langford, N., Baxter, M., Origgi, S., Barber, M., MacBain, H. and Thomas, K.: Arsenic in seaweed-Forms, concentration and dietary exposure. Food Chem. Toxicol., 45, 1263-1267 (2007). 

  125. Carrington, C.D., Murray, C. and Tao, S.: A quantitative assessment of inorganic arsenic in apple juice. Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD (2013). 

  126. Meacher, D.M., Menzel, D.B., Dillencourt, M.D., Bic, L.F., Schoof, R.A., Yost, L.J., Eickhoff, J.C. and Farr, C.H.: Estimation of multimedia inorganic arsenic intake in the U.S. population. Human Ecolo. Risk Assess., 8, 1697-1721 (2002). 

  127. Jara, E.A. and Winter, C.K.: Dietary exposure to total and inorganic arsenic in the United States, 2006-2008. International J. Food Contam., 1, 1-12 (2014). 

  128. Food Standards Australia New Zealand (FSANZ): Australian consumers are advised to avoid hijiki seaweed. News Release 18 November 2004, Food Standards Australia New Zealand, Canberra, Australia (2004) http://www.foodstandards.gov.au/newsroom/mediareleases/mediareleases2004/australianconsumersa2778.cfm. 

  129. Hong Kong Centre for Food Safety (CFS): Risk in brief: hijiki and arsenic. Hong Kong Centre for Food Safety, Hong Kong (2005) http://www.cfs.gov.hk/english/programme/programme_rafs/programme_rafs_fc_02_08.html. 

  130. World Health Organization (WHO): Evaluation of certain food additives and contaminants (Fifty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 896, Geneva, Switzerland (2000). 

  131. European Commission (EC): Commission regulation (EU) 2015/1006 of 25 June 2015- amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Official J. European Union, L161/14-L161/16 (2015). 

  132. U.S. Food and Drug Administration (FDA): FDA proposes limit for inorganic arsenic in infant rice cereal. U.S. Food and Drug Administration, Silver Spring, MD, USA (2016) http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm493740.htm. 

  133. Ministry of Health of the People's Republic of China (MOH): Food safety national standard for maximum levels of contaminants in food (GB2762-2012). Ministry of Health of the People's Republic of China, Beijing, China (2012). 

  134. Kim, W.I., Yoo, J.H. and Cho, N.J.: Current issues on the safety management of heavy metal(loid)s in the production stage of agricultural products. Safe Food, 9, 8-12 (2014). 

  135. Juhasz, A.L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L. and Naidu, R.: In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ. Health Persp., 114, 1826-1831 (2006). 

  136. Signes-Pastor, A.J., Al-Rmalli, S.W., Jenkins, R.O., Carbonell-Barrachina, .A. and Haris, P.I.: Arsenic bioaccessibility in cooked rice as affected by arsenic in cooking water. J. Food Sci., 77, T201-T206 (2012). 

  137. Norton, G.J., Pinson, S.R., Aldexander, J., McKay, S., Hansen, H., Duan, G.L., Rafigul Islam, M., Islam, S., Stroud, J.L., Zhao, F.J., McGrath, S.P., Zhu, Y.G., Lahner, B., Yakubova, E., Guerinot, M.L., Tarpley, L., Eizenga, G.C., Salt, D.E., Meharg, A.A. and Price, A.H.: Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown n multiple sites. New Phytol., 193, 650-654 (2012). 

  138. Raab, A., Baskaran, C., Feldmann, J. and Meharg, A.A.: Cooking rice in a high water to rice ratio reduces inorganic arsenic content. J. Environ. Monitor., 11, 41-44 (2009). 

  139. Rural Development Administration (RDA): In Food composition table, 7th revision. National Rural Resource Development Institute, Rural Development Administration, Jeonju, Korea (2006). 

  140. Canadian Food Inspection Agency (CFIA): Inorganic arsenic and hijiki seaweed consumption. Canadian Food Inspection Agency, Ottawa, Canada (2012) http://www.inspection.gc.ca/food/information-for-consumers/fact-sheets/specific-products-and-risks/chemical-hazards/inorganic-arsenic/eng/1332268146718/1332268231124. 

  141. Food Standard Agency (FSA): Consumers advised not to eat hijiki seaweed. Food Standard Agency, London, UK (2010) http://tna.europarchive.org/20130513091226/http://www.food.gov.uk/news-updates/news/2010/aug/hijikiseaweed. 

  142. Yokoi, K. and Konomi, A.: Toxicity of so-called edible hijiki seaweed (Sargassumfusiforme) containing inorganic arsenic. Regulatory Toxicol. Pharm., 63, 291-297 (2012). 

  143. Japanese Ministry of Health, Labour and Welfare (MHLW): Q&A: Arsenic in hijiki. Japanese Ministry of Health, Labour and Welfare, Tokyo, Japan (2004) http://www.mhlw.go.jp/topics/2004/07/tp0730-1.html. 

  144. Ministry of Health and Welfare (MOHW): Korea Health Statistics 2008: Korea National Health & Nutrition Examination Survey (KNHANES IV-2), MOHW, Seoul, Korea (2009). 

  145. Laparra, J.M., Velez, D., Montoro, R., Barbera, R. and Farre, R.: Bioaccessibility of inorganic arsenic species in raw and cooked Hizikia fusiforme seaweed. Appl. Organometallic Chem., 18, 662-669 (2004). 

  146. Yamashita, Y.: Method of removing inorganic arsenic from dried hijiki seaweed products. Nippon Suisan Gakkaishi, 80, 973-978 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로