$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 인공지능 기반의 스마트 센서 기술 개발 동향
Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence 원문보기

마이크로전자 및 패키징 학회지 = Journal of the Microelectronics and Packaging Society, v.29 no.3, 2022년, pp.1 - 12  

신현식 (전북대학교 신소재공학부) ,  김종웅 (전북대학교 신소재공학부)

초록
AI-Helper 아이콘AI-Helper

인공지능 기술의 급속한 발전으로 기존 센서에 인간의 지능과 유사한 기능을 부여하기 위한 연구가 큰 주목을 받고 있다. 기존에는 주로 센서로써의 기초 성능지표, 예를 들어 감도 및 속도 등을 향상시키기 위한 연구가 주로 진행되었지만, 최근에는 분류나 예측 등의 인공지능을 센서에 결합하기 위한 시도가 확대되고 있다. 이를 바탕으로 최근 질병 감지 센서, 모션 감지 센서 및 가스 센서 등 거의 센서 전 분야에서 지능형 센서에 대한 연구 결과가 활발히 보고되고 있다. 본 논문에서는 인공지능의 기본적인 개념, 종류 및 메커니즘과 더불어, 최근 보고된 지능형 센서에의 적용 사례에 대해 알아보고자 한다.

Abstract AI-Helper 아이콘AI-Helper

With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to com...

주제어

표/그림 (13)

참고문헌 (46)

  1. Z. Zhang, F. Wen, Z. Sun, X. Guo, T. He and C. LEE, "Artificial Intelligence-Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin", Advanced Intelligent Systems, 2100228 (2022). 

  2. N. Ha, K. Xu, G. Ren, A. Mitchell and J. Z. Ou, "Machine Learning-Enabled Smart Sensor Systems", Advanced Intelligent Systems, 2(9), 2000063 (2020). 

  3. Y. Djenouri, A. Belhadi, G. Srivastava, E. H. Houssein and J. C. W. Lin, "Sensor data fusion for the industrial artificial intelligence of things", Expert Systems, 39(5), e12875 (2022). 

  4. H. Nazemi, A. Joseph, J. Park and A. Emadi, "Advanced micro-and nano-gas sensor technology: A review", Sensors, 19(6), 1285 (2019). 

  5. K. Zhou, K. Dai, C. Liu and C. Shen,"Flexible conductive polymer composites for smart wearable strain sensors", SmartMat, 1(1), e1010 (2020). 

  6. Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu and W. Gao, "A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat", Nature Biotechnology, 38(2), 217-224 (2020). 

  7. S.B. Choi, J. S. Meena and J. W. Kim, "Technical Trends of Ti 3 C 2 T X MXene-based Flexible Electrodes", J. Microelectron. Packag. Soc., 29(1), 17-33 (2022). 

  8. Y. Guo, M. Zhong, Z. Fang, P. Wan and G. Yu, "A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing", Nano Letters, 19(2), 1143-1150 (2019). 

  9. A. Massaro, G. Ricci, S. Selicato, S. Raminelli and A. Galiano, "Decisional support system with Artificial Intelligence oriented on health prediction using a wearable device and big data", In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT (pp. 718-723). IEEE. (2020). 

  10. B. Muthu, C. B. Sivaparthipan, G. Manogaran, R. Sundarasekar, S. Kadry, A. Shanthini and A. Dasel, "A. IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector", Peer-to-peer Networking and Applications, 13(6), 2123-2134 (2020). 

  11. N. Sharma, R. Sharma and N. Jindal, "Machine learning and deep learning applications-a vision", Global Transitions Proceedings, 2(1), 24-28 (2021). 

  12. L. Meng, B. McWilliams, W. Jarosinski, H. Y. Park, Y. G. Jung, Lee, J and J. Zhang, "Machine learning in additive manufacturing: a review", Jom, 72(6), 2363-2377 (2020). 

  13. C. Janiesch, P. Zschech and K. Heinrich, "Machine learning and deep learning", Electronic Markets, 31(3), 685-695 (2021). 

  14. D. Jakhar and I. Kaur, "Artificial intelligence, machine learning and deep learning: definitions and differences", Clinical and Experimental Dermatology, 45(1), 131-132 (2020). 

  15. I. H. Sarker, "Machine learning: Algorithms", real-world applications and research directions. SN Computer Science, 2(3), 1-21 (2021). 

  16. J. Wei, X. Chu, X. Y. Sun, K. Xu, H. X. Deng, J. Chen and M. Lei, "Machine learning in materials science", InfoMat, 1(3), 338-358 (2019). 

  17. J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua and A. Lopez, "A comprehensive survey on support vector machine classification: Applications, challenges and trends", Neurocomputing, 408, 189-215 (2020). 

  18. Z. H. Kok, A. R. M. Shariff, M. S. M. Alfatni and S. KhairunnizaBejo, "Support vector machine in precision agriculture: a review", Computers and Electronics in Agriculture, 191, 106546 (2021). 

  19. P. Dey, S. K. Chaulya and S. Kumar, "Secure decision tree twin support vector machine training and classification process for encrypted IoT data via blockchain platform", Concurrency and Computation: Practice and Experience, 33(16), e6264 (2021). 

  20. B. Charbuty and A. Abdulazeez, "Classification based on decision tree algorithm for machine learning", Journal of Applied Science and Technology Trends, 2(01), 20-28 (2021). 

  21. A. Agrawal and A. Choudhary, "Deep materials informatics: Applications of deep learning in materials science", Mrs Communications, 9(3), 779-792 (2019). 

  22. D. H. Kim, "Artificial intelligence-based Modeling Mechanisms for Material Analysis and Discovery", Journal of Intelligent Pervasive and Soft Computing, 1(01), 10-15 (2022). 

  23. K. S. Garud, S. Jayaraj and M. Y. Lee, "A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models", International Journal of Energy Research, 45(1), 6-35 (2021). 

  24. S. Salman and X. Liu, "Overfitting mechanism and avoidance in deep neural networks", arXiv preprint arXiv:1901.06566 (2019). 

  25. A. Labach, H. Salehinejad and S. Valaee, "Survey of dropout methods for deep neural networks", arXiv preprint arXiv: 1904.13310 (2019). 

  26. M. Koklu, I. Cinar and Y. S. Taspinar, "Classification of rice varieties with deep learning methods", Computers and Electronics in Agriculture, 187, 106285 (2021). 

  27. Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma and B. Yu, "Recent advances in convolutional neural network acceleration", Neurocomputing, 323, 37-51 (2019). 

  28. L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma and L. Farhan, "Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions", Journal of Big Data, 8(1), 1-74 (2021). 

  29. A. Sherstinsky, "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network", Physica D: Nonlinear Phenomena, 404, 132306 (2020). 

  30. Y. Luo, Z. Chen and T. Yoshioka, "Dual-path rnn: efficient long sequence modeling for time-domain single-channel speech separation", In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 46-50). IEEE. (2020). 

  31. A.H Shahid and M.P Singh, "A deep learning approach for prediction of Parkinson's disease progression", Biomedical Engineering Letters, 10(2), 227-239 (2020). 

  32. R. Atri, K. Urban, B. Marebwa, T. Simuni, C. Tanner, A. Siderowf and L. Lancashire. "Deep Learning for Daily Monitoring of Parkinson's Disease Outside the Clinic Using Wearable Sensors", Sensors, 22(18), 6831 (2022). 

  33. I. El Maachi, G.A Bilodeau and W. Bouachir, "Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait", Expert Systems with Applications, 143, 113075 (2020). 

  34. D. L. Lovelace, L. R. McDaniel and D. Golden, "Long-term effects of breast cancer surgery, treatment, and survivor care", Journal of Midwifery & Women's Health, 64(6), 713-724 (2019). 

  35. Y. Jin, N. Du, Y. Huang, W. Shen, Y. Tan, Y. Z. Chen and C. Tan, "Fluorescence Analysis of Circulating Exosomes for Breast Cancer Diagnosis Using a Sensor Array and Deep Learning", ACS sensors, 1524-1532 (2022). 

  36. Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu, S. Wei and Z. L. Wang, "Decoding lip language using triboelectric sensors with deep learning", Nature Communications, 13(1), 1-12 (2022). 

  37. L. Wen, M. Nie, P. Chen, Y. N. Zhao, J. Shen, C. Wang and Sun, L, "Wearable multimode sensor with a seamless integrated structure for recognition of different joint motion states with the assistance of a deep learning algorithm", Microsystems & Nanoengineering, 8(1), 1-14 (2022). 

  38. N. Zhu, G. Zhao, X. Zhang and Z. Jin, "Falling motion detection algorithm based on deep learning", IET Image Processing (2021). 

  39. C. Chi, X. Sun, N. Xue, T. Li and C. Liu, "Recent progress in technologies for tactile sensors. Sensors", 18(4), 948 (2018). 

  40. Y. Wan, Y. Wang and C. F. Guo, "Recent progresses on flexible tactile sensors", Materials Today Physics, 1, 61-73 (2017). 

  41. Y. Liu, R. Bao, J. Tao, J. Li, M. Dong and C. Pan, "Recent progress in tactile sensors and their applications in intelligent systems", Science Bulletin, 65(1), 70-88 (2020). 

  42. Q. Duan, T. Zhang, C. Liu, R. Yuan, G. Li, P. Jun Tiw and R. Huang, "Artificial Multisensory Neurons with Fused Haptic and Temperature Perception for Multimodal In-Sensor Computing", Advanced Intelligent Systems, 2200039 (2022). 

  43. J. Y. Park, W. J. Lee, H. J. Nam and S. H. Choa, "Technology of stretchable interconnector and strain sensors for stretchable electronics", J. Microelectron. Packag. Soc, 25(4), 25-34 (2018). 

  44. J. H. Lee, J. S. Heo, Y. J. Kim, J. Eom, H. J. Jung, J. W. Kim and S. K. Park, "A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception", Advanced Materials, 32(22), 2000969 (2020). 

  45. M. Kang, I. Cho, J. Park, J. Jeong, K. Lee, B. Lee and I. Park, "High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm", ACS Sensors, 7(2), 430-440 (2022). 

  46. J. Lee, Y. Jung, S. H. Sung, G. Lee, J. Kim, J. Seong and S. Jeon, "High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO 3, SnO2, and NiO-based gas sensors", Journal of Materials Chemistry A, 9(2), 1159-1167 (2021). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로